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Abstract
Background/aims: In a stepped wedge study design, study clusters usually start with the baseline treatment and then
cross over to the intervention at randomly determined times. Such designs are useful when the intervention must be
delivered at the cluster level and are becoming increasingly common in practice. In these trials, if the outcome is death
or serious morbidity, one may have an ethical imperative to monitor the trial and stop before maximum enrollment if
the new therapy is proven to be beneficial. In addition, because formal monitoring allows for the stoppage of trials when
a significant benefit for new therapy has been ruled out, their use can make a research program more efficient. However,
use of the stepped wedge cluster randomized study design complicates the implementation of standard group sequential
monitoring methods. Both the correlation of observations introduced by the clustered randomization and the timing of
crossover from one treatment to the other impact the rate of information growth, an important component of an
interim analysis.
Methods: We simulated cross-sectional stepped wedge study data in order to evaluate the impact of sequential moni-
toring on the Type I error and power when the true intracluster correlation is unknown. We studied the impact of vary-
ing intracluster correlations, treatment effects, methods of estimating the information growth, and boundary shapes.
Results: While misspecified information growth can impact both the Type I error and power of a study in some settings,
we observed little inflation of the Type I error and only moderate reductions in power across a range of misspecified
information growth patterns in our simulations.
Conclusion: Taking the study design into account and using either an estimate of the intracluster correlation from the
ongoing study or other data in the same clusters should allow for easy implementation of group sequential methods in
future stepped wedge designs.
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Background/aims

Stepped wedge design

In a cluster randomized trial, clusters, rather than indi-
viduals, are the unit of randomization. These designs
are commonly used when the intervention of interest
must be delivered at the group level, such as a school-
based smoking prevention program or a study of infec-
tion control measures at a hospital. Stepped wedge clus-
ter randomized trials are cluster randomized trials in
which clusters cross from the control treatment to the
investigational treatment at fixed times over the course

of the study. Most commonly, clusters start with the
control treatment and later cross over to the investiga-
tional treatment, with all clusters ending on the
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investigational arm. The order in which clusters cross
over is randomly determined at the start of the study.
Because each cluster serves as its own control, such
studies are often more efficient than parallel cluster
designs.1–4 Stepped wedge trials may be cohort studies
or cross-sectional; we deal with the latter case here.
This trial design is especially useful when the interven-
tion is expected to have a carryover effect, limiting the
usefulness of a cluster-crossover study, or when logisti-
cal constraints limit the number of clusters in which the
intervention can be implemented at one time.5 Often,
the design is used to evaluate a promising intervention
in a ‘‘real-world’’ setting, as all clusters eventually
receive the intervention.6 Stepped wedge trials are
increasingly popular, especially increasing in use since
2010 as illustrated dramatically by Grayling et al. in
their 2017 Trials paper7; see also.5,6,8–11 Stepped wedge
cluster randomized trials are an active area of research;
much has been written on the advantages and disadvan-
tages of their use,5,12,13 design and implementation,1,14–
20 and analysis.21–26

Because stepped wedge trials are cluster randomized
trials, it is extremely important that the analysis of data
from these studies accounts for the correlation of obser-
vations, usually with a mixed-effects model or general-
ized estimating equations. Cluster-level outcomes can
also be used, though this approach is less common and
results in a loss of efficiency unless the clusters are all of
the same size.23,26–28 Because of the way the study treat-
ment is rolled out, time is partially confounded with
treatment effect and so must be included in the model,
often by incorporating a fixed period effect.22 Period-
by-cluster interactions can also be considered.27

Sequential monitoring

Group sequential monitoring methods are used to con-
duct interim analyses while preserving study character-
istics such as the Type I error and power.29,30 They
allow for early stopping of a trial if the experimental
therapy is demonstrably better or worse than the con-
trol, or if continuing the trial is unlikely to result in a
statistically significant result (i.e. stopping for futility).
These and related methods are especially important
when the outcome of interest is mortality or severe
morbidity, where one has an ethical imperative to stop
the trial if either treatment is superior to the other.29–31

In addition, formal interim analyses can create signifi-
cant efficiency gains for a research program; stopping
trials once the conclusion is foregone reduces the aver-
age sample size and cost, while allowing other trials to
begin earlier than would otherwise be possible.

Setting appropriate boundaries for an interim analy-
sis relies on specification of the Type I error at each
interim analysis (i.e. the error spending function) and
the amount of statistical information available at that
time relative to the expected final information (the

information fraction). Boundaries are typically extreme
early in the study (with less information), appropriately
requiring extreme estimates to stop the study for effi-
cacy or futility, and are less extreme as information
increases later in the study. At each analysis, the esti-
mated information is crucial for determining the actual
boundaries to be used. Overestimated information will
lead to using boundaries less extreme than needed,
potentially spuriously stopping too early for either
superiority or futility/harm, thus increasing the Type I
error and losing power. Conversely, with underesti-
mated information, the boundaries used at the interim
analysis will be more extreme than intended, leading to
the trial continuing when it could be stopped, increas-
ing the average sample size.

In a stepped wedge trial, the information fraction
available at an interim analysis depends on the typically
unknown variance components through the intracluster
correlation coefficient (ICC; the portion of total var-
iance attributable to between-cluster differences).
Uniquely, no information is gained in the first period
when all clusters are on the standard treatment nor in
the last period when all clusters are on the experimental
treatment while a period effect is used; optimal designs
do not include any periods with all clusters on the same
treatment arm.20

Grayling et al.32 laid out a theoretical framework
and justification for using group sequential methods in
stepped wedge trials with the error spending approach,
and found substantial gains in efficiency. However,
their work used known variance components or fixed
ICC, a setting where the information would be known
at each analysis time, usually not the case in practice.
More recently, Grayling et al.33 published an examina-
tion of sample size reestimation in this setting when the
variance components are unknown. This approach can
preserve power in the case either variance component
was greatly underestimated at the design phase, though
it requires that the number of subjects enrolled in each
cluster during each time period be increased and the
final sample size may need to be greatly increased. In
this article, we set out to evaluate how the study design
impacts the rate of information growth and how mis-
specification of that information growth impacts the
operating characteristics of group sequential monitor-
ing methods.

Methods

We simulated cross-sectional stepped wedge study data
in order to evaluate the impact of sequential monitor-
ing on the Type I error and power when the ICC is
unknown. We designed a study with 10 clusters, 6 time
periods, and 10 subjects per cluster in each time period.
All clusters begin the study on the control arm; two
clusters switch to the interventional arm at the end of
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each time period so that all clusters receive the inter-
ventional treatment in the final period. That results in
a total of 600 subjects enrolled in the study, 300 on
each of the treatment arms.

Let i = 1, ..., 10 indicate the cluster, j = 1, ..., 6 the
period, and k = 1, ..., 10 indicate the subject within
each cluster period. With cluster effect ai;N(0, t2) and
eijk;N(0, s2), the individual response was
yijk = ai + Xiju + eijk, where Xij is the indicator for
treatment in the ith cluster during period j and u is the
treatment effect. The ICC is defined as
r= t2=(t2 +s2). Power calculations and the calcula-
tion of the information fraction after each period are
based on the Wald test with known values of s2 and r

using the weighted least squares as presented by
Hussey and Hughes.22 In their notation

Var û
� �

=
I s2

N
s2

N
+ Tt2

� �
IU �Wð Þ s2
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P
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P
j Xij

� �2

Note that, without loss of generality, we assumed
that the data generation model did not have a period
effect. We used four different values for r: 0, 0.01, 0.05,
and 0.20. Those represent trials with no, small, inter-
mediate, and large ICC, respectively.34 We set
s2 = 1 – r to keep the variability of responses con-
stant across simulation settings (implying that t2 = r).
Three different treatment effects were evaluated:
u = 0, 0.25, and 0.43. Thus, we were able to evaluate
performance with a null effect; with an intermediate
level of power, where departures from the model
assumptions were likely to have the largest impact (esti-
mated power ranged from 47% to 61% depending on
r); with an estimated 90% power for r = 0.05, which
is a more realistic trial design.

The outcome was modeled with a linear mixed-
effects model (LMM) with the restricted log likelihood
criterion (REML). The model included treatment and
period effects (as factors); no treatment-by-period
interaction was used. With no interim monitoring, the
Kenward–Roger approximation to the degrees of free-
dom was necessary to preserve the Type I error, consis-
tent with results in other cluster randomized studies.35

For that reason, the Kenward–Roger approximation
was used for all interim analyses; at each interim analy-
sis, the Kenward–Roger adjusted p-value was com-
pared to the monitoring boundaries to decide whether
the study should stop or continue. In a recent disserta-
tion, Tanner explored the performance of various
degree-of-freedom adjustments and bias corrections in
stepped wedge trials with a small number of clusters
and unbalanced design; some of these methods may be
more appropriate than Kenward–Roger for a particu-
lar planned study.36

We calculated the information growth with three
methods. The first, the naı̈ve approach, used the period
number relative to the total number of periods (i.e. j/J);
this approach is equivalent to using the current sample
size relative to the maximum planned sample size. In the
second, we used a prespecified value of the ICC (r) and
examined the performance of the analysis with both cor-
rectly and incorrectly specified values of the ICC. For
the third approach, we estimated the ICC from the esti-
mated variance components from the LMM model fit at
the interim analysis. Each simulation was repeated
10,000 times; thus, with a true Type I error rate of 0.025,
we expect the observed value to fall between 0.022 and
0.028 95% of the time (i.e. a Monte-Carlo predictive
interval of 0.025 6 O(0.025 3 0.975/10,000)).37

We specified a monitoring plan that used a single
interim analysis, after the fourth period. At that time, 6
of the 10 clusters will have subjects who have received
the experimental therapies; all clusters will have at least
10 subjects who received the control therapy. We
looked at both the Pocock and O’Brien–Fleming
boundary shapes, as most boundaries fall somewhere
between the two.31,38,39 The p-value scale was used for
constraints.39 Sequential boundaries were generated
using SeqTrial for R (http://www.rctdesign.org/
Software.html) (Figure 1). We investigated early stop-
ping for efficacy only as well as early stopping for both
efficacy and futility (i.e. stopping once a meaningful
benefit has been ruled out).

Results

Table 1 gives the information fraction at the end of
each period for this study design across a range of true
ICC values. The information fraction was calculated
using the approximate variance of the estimated treat-
ment effect given in equation (1) above into
I(j)=Var(buj )=Var(cuJ ) for each time period j = 1, ...,
6. Note that the information depends on r but not the
error variance in this context. We found that the study
design has a large impact on the information, even with
an ICC of 0. Generally, higher ICC leads to slower
accumulation of information. At the end of the fourth
period, when we performed the interim analysis, 67%
of study subjects have been enrolled, but the true infor-
mation fraction varies from 0.65 to 0.80 depending on
the ICC. At the halfway point in the trial, the informa-
tion fractions are a bit closer together, ranging from
0.41 to 0.52 for the values of ICC that were considered.
Table 2 presents the Type I error and power observed
in the simulations for both boundary shapes.

The main concern with overestimated information
fraction is inflation of the Type I error, which we saw
only to a limited degree. The highest observed Type I
error rate was 0.029, just above what would be expected
with a true Type I error rate of 0.025, while the lowest
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was 0.013. This slight conservatism appears to result
from the use of the Kenward–Roger adjustment, rather
than the sequential monitoring or information misspe-
cification, as the error rates are similar when monitor-
ing is not used. The simulation setting with the highest
potential to see an inflated Type 1 error is when the
true r value is 0.20, but the information growth under
r = 0 or 0.01 is used (i.e. the setting where information
is most highly overestimated). In those settings, the

highest Type I error rates are observed: 0.029 with stop-
ping for efficacy only and either shape; and 0.026 and
0.027 with stopping for both efficacy and futility.
Those error rates are not consistent with a true Type I
error rate of 0.025; they are also significantly higher
than the levels found with no testing, though the abso-
lute increase is relatively small.

We saw a reduction in power when a futility bound-
ary was used and the information is overestimated

Figure 1. Sequential monitoring boundaries for a stepped wedge study.

Table 1. Information fraction after each period for different true ICCs.

Period Proportion of final enrollment ICC

r = 0 r = 0.01 r = 0.05 r = 0.20 r = 0.50

1 0.17 0.00 0.00 0.00 0.00 0.00
2 0.33 0.20 0.22 0.22 0.19 0.18
3 0.50 0.50 0.52 0.49 0.43 0.41
4 0.67 0.80 0.80 0.75 0.68 0.65
5 0.83 1.00 0.99 0.93 0.88 0.86
6 1.00 1.00 1.00 1.00 1.00 1.00

ICC: intracluster correlation coefficient.
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(i.e. the true r = 0.20 but the information growth for
r = 0 or 0.01 is used; this occurred to a lesser degree
with r = 0.05 and the information growth under
r = 0 or 0.01 is used). In those cases, we observed an
absolute reduction in power up to 8% from the cor-
rectly specified information fraction. The biggest differ-
ence was seen with intermediate treatment effect and
the Pocock boundary shape; using the overestimated
information (information growth based on r = 0 or
0.01 when the true r value is 0.20) reduced the observed
study power to 0.416 from 0.496. Those reductions in
power are substantial from a statistical perspective,
though their practical impact can be debated for most
settings.

We saw a modest increase in the average sample size
with underestimated information, which would be the
case with no or low ICC but boundaries that use the
naı̈ve approach or information growth assuming
r = 0.20 (Table 3). With the O’Brien–Fleming bound-
aries, the average sample size increased 5%–10% in
that scenario. The impact is smaller using the Pocock
boundaries, where the observed increase was 0%–6%.
Using the estimated ICC resulted in a similar loss of
efficiency. As expected, using any monitoring boundary
greatly reduced the average sample size, sometimes dra-
matically. The use of a futility boundary resulted in
large efficiency gains with the intermediate treatment
effect. In the case of the larger treatment effect, stop-
ping for the alternative resulted in similar efficiencies.
Reductions of the average sample size by 30% or more
were common in both those settings.

Conclusion

The study design significantly impacts the information
growth in stepped wedge trials, particularly early and
late in the study. However, using a misspecified infor-
mation fraction at the interim analysis did not have a
large adverse impact on either the Type I error or the
power of our simulated trials, though it did impact the
average sample size. These results suggest that planning
a single interim analysis approximately midway
through a stepped wedge design can be safely imple-
mented if researchers avoid a naı̈ve estimate of the
information fraction and use the estimated ICC at the
time of the interim analysis unless a reasonable prespe-
cified value is available. Another approach is to note
that, for the sample design studied in the simulation
and the more realistic values of the ICC used, the true
information fractions at the end of the third period are
relatively close; if the same holds for a time point and
range of ICC values of a proposed trial, the timing of
the interim analysis could be selected to minimize the
impact of the ICC on the analysis. In the simulations,
the information fraction depends only on the ICC and
so the Type I error rate can be maintained so long as

the ICC is not dramatically overestimated at the
interim analysis. However, if there is substantial uncer-
tainty in general regarding the overall variance,
researchers would be wise to consider sample size rees-
timation as part of a planned interim analysis to avoid
potential loss of power.35

In this brief report, we have only explicitly tested a
limited set of design parameters, so these results may
not be generalizable to all stepped wedge designs. In
particular, unbalanced stepped wedge designs may
show more variability in information growth as a func-
tion of the ICC. With an unbalanced design, particu-
larly one with a small number of clusters, alternative
degree-of-freedom adjustments or bias correction meth-
ods may be needed to maintain model performance in
place of the Kenward–Roger method used here.36 In
addition, we considered only a single interim analysis,
as that approach would be easier to do in practice than
multiple interim analyses. Future work is needed to
evaluate the cumulative impact of multiple interim
analyses with a poorly estimated ICC in the stepped
wedge design setting.
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