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Disclosures

* Berry Consultants
— Consulting firm specializing in Bayesian
adaptive clinical trial design
— Multiple clients

* No off label use of specific drugs
discussed
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Adaptive Trial Design

» Choices are made at the beginning of
every trial based on incomplete
information.

— don’t know dose (may know range)
— don’t know treatment effect

— don’t know control information

— don’t know population

— don’t know drug combinations

— etc.
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Driving with your eyes open

* Drug development is ALWAYS adaptive
— we just typically only adapt between trials

» Prespecified adaptations change trial
characteristics mid trial

* Imagine driving to work, do you only open
your eyes at intersections, or all the time?
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Adaptive Trial Design

» Typically as the trial continues you learn
valuable information.
— this drug doesn’t work....

— these 2 doses/treatments are promising, but
another dose/treatment shows nothing...

— the treatment works quite well!
— this group of subjects doesn’t benefit...

* Some questions are answered before
others
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Adaptive Trial Design

» Adaptive trials use the accumulating
information to change the design of the
trial

— drop doses/treatments mid trial

— add combinations of treatments.

— stop for futility (or success)

— stop enrolling certain subpopulations.

— seamlessly shift phases of development
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Different adaptations

 Futility stopping (very important..let the
subjects go to another trial...)

* Success stopping
* Arm dropping/adding

* Adaptive Randomization

— “softer” form of arm dropping, enroll more
subjects to treatments that are performing well

Enrichment

— enroll more subjects in populations that seem to
benefit from the treatment, potentially drop groups
of subjects.
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Main idea

* Modern trials have lots of questions....

* As you answer your questions, focus
resources on the things you don’t know.
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Ebola

* During outbreak, many different treatments
proposed for Ebola.

 Many can be given in combination.

* For simplicity, suppose there were four
treatments A, B, C, D
— combination of any 2 allowed

— (in reality somewhat complex structure of
combinations allowable)
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Ebola

* How to examine 4 treatments?

» Could sequentially test one at a time.

— Each experiment requires a fixed number of
subjects, provides no information about the
other treatments.

— Unclear how to add/subtract combinations.

— inefficient UNLESS you can do a good job of
picking the best treatment to investigate first.
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Ebola

* Could examine multiple treatments at

once, N subjects per
treatment/combination.

— lots of subjects placed on ineffective arms.
— effective arms may not have enough data.

* Any way to bridge the gap?
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Ebola

» Adaptively randomize.
— Start with subjects on all treatments.
— Look at mortality rates every few subjects.

— Adjust randomization at looks. More to arms
doing well, less to those doing poorly

 prespecified mathematical formula estimating the
chance each treatment/combination is the best

— Drugs/Combinations may be added freely as
trial continues (not considered here)
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Ebola

» Key things to focus on

— Mortality rate in study (treatment of patients in
trial, always important but potentially more
important in rare diseases)

— Chance of picking the right treatment at the
end (treatment of patients outside trial)
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Example 1 - Ebola

 N=250 subjects

— “burn in” 3 subjects per combination

— fit generalized linear model across
combinations.

— change allocation...allocate more to well
performing arms.

* Trial can run perpetually.
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Treatment
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Ebola

* Trial treats patients within the study better
(less mortality).

* Trial more likely to choose the correct
treatment/combination. Treats patients
outside the trial better

— better prepared for next outbreak.
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Simulation

» “Complicated” question

— | flip a fair coin 10 times, what is the
probability of getting a streak of 4 heads in a
row?
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Simulation

« “Complicated” question

— | flip a fair coin 10 times, what is the probability of
getting a streak of 4 heads in a row?

* Answer
— with some “complicated” math 24.5%

— can also simulate..meaning let a computer run the
experiment LOTS of times.
e sim1, THTHHTTHTH.....No
e sim2, HTTHHHHTTH...Yes
e sim3, HHTTTTTTHH....No
* sim4, simb5, sim6,.....
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Simulation

* The law of large numbers says that if you
run enough simulations you get very close
to the right answer

— computers can run a LOT of simulations
* | ran 100,000 simulations

— after 1,000....rate was 24.2%
— after 10,000....rate was 24.7%
— after 100,000....rate was 24.5%
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Simulation

* Another complicated question
— | flip coin N times and look for 4-head streak

— What N gives me 90% of chance of streak?
 (same kind of question as power calculation)
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Simulation

* Another complicated question
— | flip coin N times and look for 4-head streak
— What N gives me 90% of chance of streak?
 (same kind of question as power calculation)
* By simulation
— N=10 gives 24.5%
— N=50 gives 82.9%
— N=70 gives 91.7%
— N=65 gives 90.1%
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Simulation

» Ok, back to “reality”

* In “simple” clinical trial designs, we can do
the math directly to get power, sample
size, etc.

* In complex trials (many/most adaptive
trials), we have to simulate to get these
guantities.

— basic idea is the same, have computer
randomly generate the trial MANY times.
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Simulation Example

 Trial with 2 doses (low, high)
— N=216 total, enroll 36 patients per month

— simplifying to deterministic enrollment with
instant endpoint. Can account for in practice.

* Endpoint is composite event
— low can be better than high

* |ncreases of 2 units considered valuable
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Fixed Tral

Enroll 72 subjects per dose (control, low, high)
Have to adjust for multiplicities

— use alpha/2=0.025 and test each dose

Trial always enrolls N=216

Suppose drug doesn’t work

— true effect in low = 0, true effect in high =0

— Pr(success) = 2.3% (type | error rate)
— essentially always enroll full trial and fail

Suppose drug does work
— true effect in low = 1, true effect in high =3

— Pr(success) = 77.1%
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Nailve adaptive trial

 Interim Analyses

— After one month stop the trial if neither dose
achieves 2 unit increase

— After three months, choose the dose with the
higher observed mean.
* At end of trial perform t-test with selected
dose

—alpha=0.05/2=0.025 significance level
(account for two doses in study)
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Naive trial

EXAMPLE 1 Placebo | Low dose | High dose
Mean Mean Mean

Month 1 Futility 10.9 Continue
Month 3 Dose selection 5.6 8.3 7.4 Choose low dose
Month 6 Final Analysis 5.2 7.9 NA Success, p=0.001

EXAMPLE 2 Placebo | Low dose | High dose
Mean Mean Mean

Month 1 Futility Futility

Month 3 Dose selection

Month 6 Final Analysis
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Simulate 1000 trials
when the drug doesn’t work

* We want the trial to declare futility if the
drug doesn’t work.

— So let’'s assume no effect of the drug, and see
how often it declare futility

— like the “streak” example, can do the math
here, but we are focused on simulation

— Can simulate 1000 trials.
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Simulate 1000 trials

Futility Analysis at Month 1 679 of 1000
trials are futile
GOOD...

5
|

High variation

here! Lots of trials
that continue have
observed treatment

effect on the order
of3,4,5

5

Observed high dose effect
0
|

Expected sample size
_5 0 5 679 trials N=36

321 trials N=216
Average N=93.8

Observed low dose effect
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Simulate 1000 trials
when the drug does work

* While stopping a lot of bad drugs is good,
we do NOT want to stop good drugs

— Suppose it works
* low effect 1, high effect 3 (so high is good)

— Now simulate 1000 trials under this condition
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Simulate 1000 trials
when the drug DOES work (1,3)

Futility Analysis at Month 1 305 trials
are stopped
for futility
8 o | UHOH
"'G_J -
(O]
é Even with a good
£ 0 - effect on the high
E ) dose, the high dose
2 gets unlucky a LOT.
o © 00
3
o These early futilities
0 _ directly lower power.

Observed low dose effect
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Simulate 1000 trials
under both conditions

Both sets of points on one graphs

Purple=Doesn't work, Green=works These distributions

overlap a lot.

any futility rule
which removes

a lot of the purple
will also remove

a lot of green.

10

If we don’t want
to eliminate good
drugs, need MUCH
less restrictive

-5 0 5 cutoffs

Observed high dose effect

Observed low dose effect
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New futility rule

* Need to avoid stopping drugs that work

* Look later (month 3 with dose selection)

— better discrimination between drugs that work
and drugs that don’t

« Change form of rule to something more
“statistical”
— neither dose has p<0.25 compared to placebo
— accounts for variation, scales with sample size
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Simulate 1000 trials
3 month futility look

These distributions

Both sets of points on one graphs overlap less.
Purple=Doesn't work, Green=works More discrimination
© o)
5 o p<0.25 at 3 month
% corresponds to
Q< about a difference
5 of 1.0
5 7
c
$ o - Declares only 5.6%
> . .
S of effective drugs futile
S ' Declares 62.6% of
¥ - ineffective drugs
| | | | | futile.
-4 -2 0 2 4
Observed low dose effect Expected N=148.4

when ineffective
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Simulate 1000 trials (truth 1,3)
3 months including dose selection

Futility Analysis at Month 3 56 Red points futile
© - 944 Black points
continue

3]
L ©
° Below the line you
§ « pick the low dose
< o (73 times)
sy
_C
O N .
2 o Above the line you
& o % pick the high dose
o o
o) (871 times)

Dose selection works
pretty well.

Observed low dose effect
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Total results for 1000 simulations

For ineffective drugs For effective drugs

(true effects 0,0) (true effects 1,3)
CEETER T T | C e e
None (futility) 0 None (futility)
Low dose 11 187 Low dose 25 48
High Dose 9 167 High Dose 795 76

11+9 = 20 successes = 2% 795+25 =820 successes = 82%

these are type | errors this is the power

(although the 25 low dose
%/ successes are “type 3 errors”?)
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Comparison to fixed trials

T et Lndaptve

Type | error rate 2.3% 2.0%

Power 77.1% 82.0%

Futility savings None Save half the study
when drug doesn’t 63% of the time
work

Sample size on 72 90

selected dose
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Summary

« Adaptive trials allow you to prospectively
change the trial based on incoming
information.

* Avoids inefficiency due to uncertainty prior
to trial start.

« Complex adaptive trials require simulation
to assess operating characteristics

* Simulations can guide better decisions.
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