Marshall Scale for Head Trauma

Mark C. Oswood, MD PhD
Department of Radiology
Hennepin County Medical Center, Minneapolis, MN

Investigator Meeting
February 2018
History of Marshall scale

• Proposed by Marshall, et al in 1991 to classify head injury
• Used to identify patients at higher risk for mortality
• Evaluates 3 imaging findings
 • Basilar cisterns
 • Midline shift
 • High/mixed density mass lesions
• Correlation shown between category and mortality
 • Category 1: 10% mortality
 • Category 4: >50% mortality
Imaging findings seen in Head Trauma

• Subarachnoid hemorrhage
• Subdural hemorrhage
• Epidural hemorrhage
• Herniation
• Edema
• Intra-parenchymal Hemorrhage
• Fracture
Subarachnoid hemorrhage

- Trauma is most frequent cause of SAH
- Complications include vasospasm and hydrocephalus
- May require CTA to differentiate from aneurysmal SAH
Subdural hemorrhage

- Prognosis depends on size and chronicity
- Increased density in acute SDH
- May require surgical drainage if large and/or acute
Epidural hemorrhage

- Usually associated with fracture
- Require urgent surgical drainage if enlarging (arterial bleed)
- Small EDH often managed conservatively
Herniation

- Subfalcine herniation (midline shift)
- Measure shift of septum pellucidum from midline
- Can result in hydrocephalus or infarction
Edema

- Loss of normal sulci
- Loss of gray-white differentiation
- May be associated with hypoxic-ischemic injury
Intra-parenchymal Hemorrhage

- High/mixed density mass
- Most common in frontal and temporal lobes
- Small lesions frequently seen with traumatic axonal injury
Measurement of high/mixed density masses

• Measure maximum transverse, anterior-posterior, and cranio-caudal dimensions (A, B, C)

• Volume of ellipsoid is calculated by formula:
 • Volume = \(\frac{A \times B \times C}{2} \)

 • Newman G, Stroke. 2007;38:862
Measurement of hemorrhage volume

A = 4cm, B = 8 cm, C = 6 cm

Volume = \(\frac{4 \times 8 \times 6}{2} = 96\) cc
Fracture
Categories of Marshall scale

• 1: Normal for age
• 2: High/mixed density mass less than 25cc, midline shift less than 5mm, basilar cisterns preserved
• 3: Basilar cisterns effaced
• 4: Midline shift greater than 5mm
• Evacuated mass lesion: High/mixed density mass >25cc which was surgically evacuated
• Non-evacuated mass lesion: High/mixed density mass >25cc not surgically treated
Examples of each category

• Findings to evaluate for Marshall score:
 • Volume of high/mixed density mass
 • Basilar cisterns
 • Midline shift

• Other findings:
 • Fracture
 • Pneumocephalus
 • Subarachnoid hemorrhage
Category 1

- Basilar cisterns patent
- No midline shift
Category 2

Sphenoid fracture and pneumocephalus

Epidural hemorrhage
Category 2

Basilar cisterns patent

No midline shift
Category 3

Basilar cisterns compressed

No midline shift
Category 4

Basilar cisterns compressed

Midline shift > 5mm
Evacuated mass

Subdural hemorrhage greater than 25cc volume

Midline shift resolved after surgical drainage
Evacuated mass

Subdural hemorrhage greater than 25cc volume

Basilar cistern compression resolved after surgical drainage
Unevacuated mass

Subdural hemorrhage > 25cc

Midline shift with compression of basilar cisterns
Unevacuated mass

Patient was not surgical candidate due to neurologic examination

Duret hemorrhage in brainstem
HCMC Marshall scale template

Marshall Traumatic Brain Injury Scale:

MARSHALL DIAGNOSTIC CATEGORIES OF ABNORMALITIES VISUALIZED ON CT SCANNING FOR TRAUMATIC BRAIN INJURY:

Diffuse Injury 1: No visible intracranial pathology seen on CT scan.

Diffuse Injury 2: Cisterns are present with shift 0-5 mm and/or lesion densities present. No high or mixed density lesion>25ml. May include bone fragments and foreign bodies.

Diffuse Injury 3 (swelling): Cisterns compressed or absent with shift 0-5mm. No high or mixed density lesion>25ml.

Diffuse Injury 4 (shift): Shift>5mm. No high or mixed density lesion>25ml.

Evacuated mass lesion: Any surgically evacuated lesion.

Non evacuated mass lesion: High or mixed-density lesion>25ml. Not surgically evacuated.
High/mixed density mass greater than 25 cc?
- Yes
- No

Basilar cisterns patent?
- Yes
- No

Midline shift greater than 5 mm?
- No
- Yes

Surgically drained?
- Yes
- No

Evacuated Mass Lesion

Non-Evacuated Mass Lesion

Category 2

Category 3

Category 4
Differentiating Category 2 & 3

Category 2:
Basilar cisterns patent

Category 3:
Basilar cisterns compressed
Prognosis from Marshall scale

• Prognosis depends on:
 • Age
 • Motor function
 • Pupil reactivity
 • CT scan findings including subarachnoid hemorrhage

• Marshall scale score can be used as one component of prognosis
• Marshall score alone is poor predictor of functional outcome
Limitations of Marshall scale

• Does not consider location of hemorrhage: subarachnoid, subdural, epidural, parenchymal
• Does not evaluate for traumatic axonal injury
• Does not differentiate degree of subfalcine or uncal herniation
• Intended to measure mortality, not likelihood of functional recovery
Alternatives to Marshall scale

• Rotterdam
• Stockholm
• Helsinki

• Use additional information from subarachnoid hemorrhage, intraventricular hemorrhage, degree of midline shift, location of high density mass

• May be more accurate in predicting prognosis
• More complicated to use with more interobserver variability
References

