

Using preclinical data to inform human trials

The safety perspective

Dietrich Haubenberger

Clinical Trials Unit
NINDS Intramural Research Program

Questions to be answered with pre-clinical data:

- Is it safe to put drug candidate into humans?
- What is an safe dose for human clinical trials?
 - Starting dose
 - End dose
- What are dose-limiting toxicities?
 - Therefore: what should be monitored in clinical trials?
- What could be potential toxicities that cannot be identified in clinical trials?

General principles non-clinical testing

Main goals

- 1. Identification of organ toxicity
- 2. Relationship to drug exposure
- 3. Determination of on- and off-target effects
- 4. Potential relevance to humans
- 5. Identification / qualification of safety biomarkers to monitor in clinic

Non-clinical safety testing regimens depend on

- 1. Type of therapeutic (small molecule, biologic, etc.)
- 2. Therapeutic indication (CNS, etc.)
- 3. Scope and design of first-in-human trial (treatment duration, route of administration, etc.)

What should I know about my drug:

IND: FDA	. F <u>o</u> rm	1571 _{Data}	Import Data	Next Page	Previous Page	E-mail Form	Goto Page?	Reset Form
12.	12 CONTENTS OF APPLICATION							
	This application contains the following items: (Check all that apply)							
☐ 1. Form	☐ 1. Form FDA 1571 [21 CFR 312.23(a)(1)]							
2. Table	2. Table of Contents [21 CFR 312.23(a)(2)]							
3. Introductory statement [21 CFR 312.23(a)(3)]								
4. Gener	4. General Investigational plan [21 CFR 312.23(a)(3)]							
5. Investigator's brochure [21 CFR 312.23(a)(5)]								
6. Protocol(s) [21 CFR 312.23(a)(6)]								
a. Study protocol(s) [21 CFR 312.23(a)(6)]								
☐ b. Investigator data [21 CFR 312.23(a)(6)(iii)(b)] or completed Form(s) FDA 1572								
☐ c. Facilities data [21 CFR 312.23(a)(6)(iii)(b)] or completed Form(s) FDA 1572								
d. Institutional Review Board data [21 CFR 312.23(a)(6)(iii)(b)] or completed Form(s) FDA 1572								
7. Chem	iistry, man	ufacturing, an	d control data	[21 CFR 312.	23(a)(7)]			
	Envi	ronmental ass	essment or cla	im for exclus	ion <i>[21 CFR 31</i>	2.23(a)(7)(iv)(e)]	
8. Pharmacology and toxicology data [21 CFR 312.23(a)(8)]								
9. Previous human experience [21 CFR 312.23(a)(9)]								
\square 10. Additional information [21 CFR 312.23(a)(10)]								

What should I know about my drug:

- CMC: Chemistry, Manufacturing, and Control
 - A drug product is composed of
 - Drug substance (API)
 - Excipients
 - Impurities
 - Container
 - Data on *Identity*, *Strength*, *Purity*, and *Quality* of drug
 - Additional Information:
 - Manufacturer, Storage, Stability, etc.

What should I know about my drug:

Pharmacology & Toxicology

- Pharmacological effect and mechanism in animals
- Absorption, Distribution, Metabolism, Excretion
- Toxicology (acute/subacute/chronic)
- Safety pharmacology per systems:
 - Cardiovascular, CNS, pulmonary, etc.
- Special toxicology tests related to mode of administration
 - e.g., dermal toxicology
- Genetic toxicology (often in vitro)

Once First-in-Human started, done with pre-clinical?

non-clinical development

CMC for Phase 1 Pharmacology Acute Toxicology CMC: Alternate formulations, lots, etc.
Chronic Toxicology
Pharmacology of alternate formulations
Reproductive toxicology
Addtl. safety pharmacology

. . .

Non-Clinical Safety for IND – the regulatory view

Off the shelf FDA-approved drug:

- Assume that the drug product meets animal toxicology standards for maximum approved dose and length of exposure per label.
- If higher dose, longer duration, different formulation, or different route of administration is planned than what is approved in the label, additional non-clinical studies might be necessary.
- Different patient population: different risk/benefit ratio and propensity for safety events
- If combination of more than one approved drugs are given: evidence on potential interactions might be necessary
- CMC: if used exactly as marketed: label sufficient

Non-Clinical Safety for IND – the regulatory view

Investigational drug supplied by another sponsor

- Obtain a letter allowing reference to another IND.
- Ask for and make yourself familiar with the Investigator's Brochure (IB)
- Must support the planned dose and route of administration.

Dietary supplement

- Typically not an approved drug without approved safe dose.
- No non-clinical toxicology can be assumed.
- If used as drug in a clinical trial: no difference in requirements to "regular" pharmaceuticals

Investigational drug you make yourself

 Generally must provide full set of non-clinical pharmacology and toxicology data using you own product.

How to pick a starting dose

- You might not need additional non-clinical information if ...
 - There is a FDA-approved dosing range is available (see label)
 - Data in the literature, or any other study that is available to you supports dose range, duration of exposure, and mode of administration
 - Animal studies
 - Human experience
 - CAVEAT: Reports/publications should be specific
 - N of exposed animals, humans
 - Doses, duration of exposure, mode of administration
 - Ideally: obtain data sets!

From animal to human ...

• If no previous human experience, estimate *Maximum Recommended*Starting Dose (MRSD) starting dose using 5 steps:

Guidance for Industry

Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > July 2005 narmacology and Toxicology

J:\!GUIDANC\5541fnlcln1.d 07/06/05

Step 1: NOAEL

- No Observed Adverse Effect Level
- Definition
 - "The highest dose level that does not produce a significant increase in adverse effects in comparison to the control group."
 - AEs that are biologically significant should be considered for determination of NOAEL
- Benchmark for safety when derived from appropriate animal studies
- Can serve as the starting point for determining a reasonably safe starting dose of a new therapeutic in humans

Step 2: Human Equivalent Dose (HED)

- Toxic endpoints (e.g., MTD) are assumed to scale well between species when normalized to body surface area
- HED can be calculated using body surface area (mg/m²) converted into mg/kg using standardized speciesspecific scaling factors

Table 1: Conversion of Animal Doses to Human Equivalent Doses Based on Body Surface Area							
	To Convert	To Convert Animal Dose in mg/kg					
	Animal Dose in	to HED ^a in mg/kg, Either:					
Species	mg/kg to Dose in	Divide	Multiply				
	mg/m², Multiply by k _m	Animal Dose By	Animal Dose By				
Human	37						
Child (20 kg) ^b	25						
Mouse	3	12.3	0.08				
Hamster	5	7.4	0.13				
Rat	6	6.2	0.16				
Ferret	7	5.3	0.19				
Guinea pig	8	4.6	0.22				
Rabbit	12	3.1	0.32				
Dog	20	1.8	0.54				
Primates:							
Monkeys ^c	12	3.1	0.32				
Marmoset	6	6.2	0.16				
Squirrel monkey	7	5.3	0.19				
Baboon	20	1.8	0.54				
Micro-pig	27	1.4	0.73				
Mini-pig	35	1.1	0.95				

^a Assumes 60 kg human. For species not listed or for weights outside the standard ranges, HED can be calculated from the following formula:

HED = animal dose in mg/kg x (animal weight in kg/human weight in kg) $^{0.33}$.

^b This k_m value is provided for reference only since healthy children will rarely be volunteers for phase 1 trials.

^c For example, cynomolgus, rhesus, and stumptail.

Step 3: Species selection

- If more > 1 species were studied, which HED to pick?
- Factors to consider
 - Animal model most predictive of human toxicity
 - Differences in absorption, distribution, metabolism, excretion (ADME)
 - For Biologics: does model express relevant receptors/epitopes?
- In absence of data on species relevance: choose species with *lowest* HED

Step 4: Safety Factor

- Goal: providing a margin of safety for protection of human subjects receiving the initial clinical dose
- Allows for variability in extrapolating from animal tox studies resulting
- Default safety factor: **10**
 - Practically: divide appropriate HED by 10
 - Reasons for <u>increasing</u> the safety factor: steep dose response curve, severe/irreversible toxicities, non-monitorable toxicities, toxicities without premonitory signs, animal model with limited utility, etc.
 - Reasons for <u>decreasing</u> the safety factor: therapeutic is member of well-characterized class, easily monitorable toxicities, etc.

Step 5: Pharmacologically active dose (PAD)

Definition:

- The PAD is the lowest dose tested in an animal species with the intended pharmacological activity
- Typically derived from appropriate pharmacodynamic models
- Once MRSD is determined, compare to the HED of the PAD.
- If needed, adjust MRSD if pharmacologic HED is lower
- PAD might also be a more sensitive indicator of potential toxicity (e.g., vasodilators, anticoagulants, etc.)

Example

 Non-clinical toxicology studies determined a NOAEL of 15 mg/kg in dogs, 50 mg/kg in rats, and 50 mg/kg in monkeys.

- Conversion to HED
 - Division method:
 15 mg/kg (dog) / 1.8 = 8 mg/kg
 50 mg/kg (rat) / 6.2 = 8 mg/kg
 50 mg/kg (monkey) / 3.1 = 16 mg/kg
- Appropriate HED: 8 mg/kg

Table 1: Conversion of Animal Doses to Human Equivalent Doses Based on Body Surface Area								
	To Convert Animal Dose in	To Convert Animal Dose in mg/kg to HED ^a in mg/kg, Either:						
Species	mg/kg to Dose in	Divide	Multiply					
	mg/m², Multiply	Animal Dose By	Animal Dose By					
	by k _m							
Human	37							
Child (20 kg) ^b	25							
Mouse	3	12.3	0.08					
Hamster	5	7.4	0.13					
Rat	6	6.2	0.16					
Ferret	7	5.3	0.19					
Guinea pig	8	4.6	0.22					
Rabbit	12	3.1	0.32					
Dog	20	1.8	0.54					
Primates:								
Monkeys ^c	12	3.1	0.32					
Marmoset	6	6.2	0.16					
Squirrel monkey	7	5.3	0.19					
Baboon	20	1.8	0.54					
Micro-pig	27	1.4	0.73					
Mini-pig	35	1.1	0.95					

- Safety factor 10:
 - Max. recommended starting dose: 0.8 mg/kg

Limitations of the NOAEL/MRSD approach

- Algorithm can be too "mechanical"
- Toxicity focused, less pharmacology-based
- Does not address dose escalation
- Does not apply to locally administered drugs
- Not fully applicable to biologics
 - Often no real NOAEL measureable
 - Alternative approach using Minimum Anticipated Biological Effect Level (MABEL)

Clinical safety monitoring

Non-clinical safety signals determine clinical safety monitoring

- But: be vigilent about the unknown!
 - Review from 150 compounds:
 - positive concordance rate (sensitivity) between observed animal and human toxicities is 70%
 - Therefore, 30% of human toxicities are not predicted.

Toxicity prediction

Greaves P, Williams A, Eve M. First dose of potential new medicines to humans: how animals help. Nat Rev Drug Discov. 2004 Mar;3(3):226-36.

Summary

- If human data is lacking, non-clinical safety data crucial for
 - Dose selection
 - Panning of clinical trial safety monitoring
 - Meeting regulatory requirements
- Human data may be more valuable than non-clinical data
- Non-clinical experiments are usually expensive
- Usually no need to worry if compound is FDA approved and used within the limitations of the label

Thank you