Multiplicity – Incentives and risks of one fooling oneself

Michelle Detry August 22, 2018

Disclosures & Statements

- Financial Disclosures:
 - Employee of Berry Consultants (Multiple Clients)

- Off-label statement
 - This presentation will not include information on unlabeled use of any commercial products or investigational use that is not yet approved for any purpose.

Multiplicities – the concern

- Multiplicities/Multiple Comparison concerns arise when numerous statistical tests are performed
- Some may not be "real", may be "significant" due to chance alone
- Type I error probability of making an incorrect conclusion of an effect
- The more tests you make the greater chance of making a Type I error

How much of a concern?

- Research question/goal of project determines amount of error willing to risk
- For example: Phase 3 confirmatory clinical trial
 - High level of evidence, want to change clinical practice
 - More stringent control of Type I errors

How much of a concern?

- Exploratory study, earlier phase study
- Maybe want to generate hypotheses
- Maybe less stringent control of Type I error because will have subsequent study designed to specifically to confirm results
- Type I error level should be set in context of your study question
- Also think what will you do next

Consequence of Lots of Data

- You get your study funded
- Want to get your money/effort's worth
- Collect lots and lots of information
- Easy to do with computing resources
- Can process lots of data
- Very very tempting to explore anything and everything to "find something significant"
- But you want credible and reproducible results too

Multiplicity Examples

Multiple tests across multiple treatment arms

Multiple tests among subgroups

Multiple statistical tests performed while data is accumulating

Multiple Treatment Arms

- Randomized trial with 4 active doses of a new drug and a control/placebo arm
- Want to compare each active dose to control
- Four tests
- Let's say doses are ordered, 1, 2, 3, and 4 mg
- You run the trial and find p-values of 0.20, 0.18, 0.04, 0.30
- Do you believe that dose 3 is only effective dose?
- Will others believe it?

Multiple Treatment Arms (continued)

- Must think in the context of the question and background
 - What was research question
 - What was study designed to answer
- With these 4 doses we were thinking there would be a dose response, i.e. response would increase as dose increases
- Simply comparing each one to control did not really address the question
- Don't blindly live by p-values

Multiple Treatment Arms (continued)

- Think about these issues and study question while designing trial and writing protocol
- Would have pre-specified how I would pick the best dose(s) and modeled the dose-response
- I would have thought, what was next likely a confirmatory trial comparing the best dose(s) to the std of care/control

Multiple Subgroups: "Significant" xkcd.com comic

"Significant" xkcd.com comic

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETVEEN PINK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND AONE (P > 0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

"Significant" xkcd.com comic

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND AONE (P > 0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND AONE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05)

"Significant" xkcd.com comic

Multiple Subgroups

- Randomized study comparing intervention A to standard of care
- At end of trial, unexpectedly, did not find significant effect
- But have lots of data
- Look at outcome in male, age>50, subjects with pre-existing disease X
- You see a benefit with intervention A!

Multiple Subgroups (continued)

- Do you believe it with the evidence in this trial?
- Would you have restricted inclusion to men, older than 50, with pre-existing disease X
- You want to publish result
- How should you frame the result in the context of multiple subgroup combinations you examined?
- Be honest, state what you did

Multiple Testing

- Example 1
- Your trial has half the subjects enrolled and data/outcomes collected
- You did not plan ahead that you would do an interim analysis of data
- But an abstract deadline in 2 weeks and you really want to submit
- Do you analyze the data and submit an abstract if you see a positive result?
- And then you will update the results with the full data when you go to the conference?

Multiple Testing (continued)

- Example 2
- You have a trial with a continuous outcome measure
- You measure a blood level, and want to see if there is a difference in outcome between good and bad blood levels
- What is the cutpoint for the blood level
- You try 1 definition, not significant
- You try 2nd definition, not significant
- You try a 3rd definition, significant!
- Do you report that there is a difference using the 3rd definition?

Multiple Testing (continued)

- Example 3
- Larger double-blinded randomized clinical trial, that takes 3 years to enroll
- Two arms: intervention/control
- Outcome measured at 3 months
- Want to "look" at the data (unblinded) during trial to determine if you can stop early for success

Multiple Testing (continued)

Acceptable methods to incorporate interim analyses

 Requires pre-planning (but that is always good) and pre-specification of design details

Requires a higher level of evidence at earlier interims than later interims

Example

- Clinical trial for TBI, examines experimental treatment versus standard of care (SOC)
- Not sure how fast treatment needs to be administered, think sooner is better
 - Within 2 hours after injury
 - 2-12 hours after injury
- Want to compare active treatment to SOC in both populations

Example (continued)

- Want Type I error at 5%
- But we have 2 tests, increased chance of making
 Type I error
- Do I have to adjust for the multiple tests?
- Bonferroni adjustment to adjust for multiplicities would use 2.5% alpha for each test
- But with 2.5% alpha power is lower
- Need to enroll more subjects in each group to get back to desired power

Example (continued)

- Think about the question
- Would you think that giving the intervention quicker would yield better results?
- So if the intervention didn't work when given 0-2 hrs. after injury, would you think longer than 2 hrs. would work?
- So maybe instead of harsh Bonferroni adjustment, use a different adjustment method

Example (continued)

One option:

- Test the active trt vs. control in the 0-2 hrs. group
- If it is significant at 0.05, then and only then do you test in the 2-12 hrs. group
- If 0-2 hrs. population not significant, do NOT test 2-12 hrs. population
- Pre-specify in protocol
- Preserves power for comparison in the 0-2 hr. group
- Can be shown that it preserves the Type I error rate

How to handle multiplicities

- Recommend much thought into defining study question
- Select primary aim and primary outcome
- Think about what you want to be able to say at the end of the trial
- Limit this question to single goal if possible
- Can have other aims, secondary and exploratory that do not require same level of evidence, conclusions are more exploratory

How to handle multiplicities

Pre-specification!

Define primary and secondary analyses in protocol

 Describe how you will handle multiple tests or defend if no adjustments will be made

How to handle multiplicities

- When reporting results, be clear on how you arrived at results
- Was it the primary analysis? Exploratory subgroup analyses?
- How many subgroups did you examine?
- Were these subgroups pre-defined?
- Interpret correctly and do not overstate

Adjustment for multiplicity

- Different statistical methods of adjustment for multiple tests
- Usually requires more evidence, a higher probability result is real
- However, consequence is that you may make more Type II errors where you conclude there is not an effect but there was
- Need to balance desire for multiple tests with consequences

Summary

- Multiplicities it's complicated
- In publications/summaries be clear what was found through pre-specified analyses what wasn't
- Need to keep track of everything you analyze!
- Adjust where warranted, but better to focus during design phase to minimize need to adjust statistically

Summary

- Want your results to be reproducible! If results from exploratory analyses may need another study to confirm
- Consider results carefully in context of research question, prospective biological rationale, previous published studies
- If prepare multiple publications be clear about all the analyses, publications planned

