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ABSTRACT

Ordinal outcomes are common in medicine and can be analyzed in many ways, but the distribution of
ordinal data can present unique challenges. The proposed KESETT study is a three-armed, randomized
trial comparing two doses of ketamine plus levetiracetam to levetiracetam alone for treating patients with
benzodiazepine-refractory status epilepticus. A Bayesian, adaptive clinical trial is proposed employing an
ordinal primary outcome at 60 min ranging from 1 (improving consciousness and seizure cessation) to
5 (life-threatening event/death). Based on a previous study, the ordinal outcome is expected to have a
bimodal distribution, with the effect of treatment expected to be nonproportional across the outcome scale.
As such, approaches relying on assuming proportionality of the odds are not appropriate. We propose for
this scenario an analytic approach to compare ordinal outcomes using the expected score derived from the
posterior distribution for each treatment group. This approach requires minimal assumptions, maintains the
benefit of using the full ordinal scale, is interpretable, and can be used in a Bayesian analysis framework. We
compare this new approach under multiple simulated scenarios to three traditional frequentist approaches.
The new approach controls Type | error and power, resulting in a sizable reduction in sample size relative to
a nonparametric test.
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1. Introduction

Previous clinical trials have taken a wide variety of approaches
for a primary analysis to assess for an association between an
ordinal outcome and a treatment of interest. Ordinal data is
frequently dichotomized for simplicity or if the expected treat-
ment benefit is concentrated in one section only. Alternatively,
ordinal data may be analyzed using a proportional odds model, a
nonparametric test (i.e., Wilcoxon Rank Sum, Cochran-Mantel-
Haenszel, etc.) (Saver 2011; Evans et al. 2015; Evans and Foll-
mann 2016), or with parametric tests (i.e., t-test) which assume
that the mean of the ordinal outcome follows a normal distri-
bution (Chaisinanunkul et al. 2015; Jovin et al. 2015; Deeds et
al. 2020). Both the proportional odds model and t-test have
limitations because of their assumptions, which could hinder
model performance if these assumptions are violated. For the ¢-
test, while the central limit theorem implies that the mean of the
ordinal outcome can be treated as normally distributed, doing
so will inherently allocate nonzero probability mass to average
values which cannot be obtained from the ordinal data, such
as values which are below the minimum observable response.
In this article, we propose an analytic approach for an ordinal
outcome based on the expected score which avoids assuming
the mean of the ordinal outcome follows a normal distribution,
maintains the benefit of using the full ordinal range and can be
used in a Bayesian analysis framework.

2. Motivating Example

This work is motivated by a multicenter, randomized clinical
trial which is currently being planned to compare the effective-
ness of two doses of ketamine (KET) plus levetiracetam (LEV)
versus levetiracetam alone in emergency department treatment
of patients with benzodiazepine-refractory status epilepticus
(Ketamine for Established Status Epilepticus Treatment Trial, or
KESETT). The primary objective is to determine whether the
addition of low- or high-dose ketamine (KET) to levetiracetam
(LEV) is more effective than LEV alone for Status Epilepticus
(SE) among patients one year and older. In this study, LEV is
the active comparator. The primary outcome for the study is a
composite outcome which is a graded scale that ranges from 1
to 5. The outcome is assessed during the 60 min following study
drug initiation and is scored using the scheme below.

1. No clinically evident or electrographic status epilepticus after
15 min, no rescue drugs, and improving mental status by 60
min

2. No clinically evident or electrographic status epilepticus after
15 min, not intubated, but not improving mental status at 60
min

3. No clinically evident or electrographic status epilepticus in
the 15 min after dosing, but intubation or requiring rescue
medications (including medications used for intubation)
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4. Any clinically evident seizure, continuous electrographic
seizure exceeding 5 min in duration, or cumulative elec-
trographic seizure burden exceeding 8 min (ie., status
epilepticus), occurring between 15 min and 60 min after
treatment.

5. Life-threatening hypotension or cardiac arrhythmia or death

A prior study of LEV suggested that the distribution of the
ordinal data would be bimodal and highly concentrated in two
nonadjacent categories, where it is expected that there will be
a substantial reduction in the more severe categories with a
reduced impact of treatment in the lower categories (Kapur
et al. 2019; Chamberlain et al. 2020). Given the hypothesized
treatment effect, the proportional odds assumption would be
violated. Further, the KESETT clinical investigators sought a
Bayesian design. As such, we propose the use of the expected
score as the primary measure of comparing treatment arms in
a Bayesian, adaptive clinical trial. We compare our proposed
design to other analytic approaches under a variety of simu-
lated scenarios to assess the impact of early stopping criteria at
interim analyses and Response Adaptive Randomization (RAR).

3. Methods
3.1. Expected Score

Let X; = (X1 - . .»Xn,¢) represent a set of ordinal outcomes for
subjects i=1,. . .,n; in treatment group ¢ where x; € (1,...,L).
We assume that X;~ Multinomial (P;) with P; = (Py4,...,Prs)
representing the vector of probabilities where Pj; = Pr(x;=1)
and ) | Py=1. Our approach is Bayesian; as such, we
assume a Dirichlet prior distribution, Dirichlet (otp) with
ap= (0.1,...,0.1), for P;. This choice of prior distribution
is noninformative and was chosen because it is conjugate
for the multinomial likelihood. Given the utilization of the
conjugate Dirichlet prior for the multinomial likelihood, our
resultant posterior distribution is a Dirichlet distribution where
Py~ Dirichlet( ), I (xjy=1)40.1,..., >, I(xi=L) +0.1) where
I(xy=1) is an indicator function which equals 1 if subject i in
treatment group t has a score of 1. For treatment group ¢, we
define the expected score, S; as ;=) | 1x Py . This quantity
of interest will be our primary tool for comparing treatment
arms with a lower score indicating a better outcome and is
approximately equal to the mean of the observed scores. Our
utilization of the expected score is similar to that of the UW-
mRS in the MOST and DAWN trials, where the weights applied
to our outcome reflect a constant increase in severity when
transitioning to the next level in the ordinal outcome (Jovin
et al. 2015; Deeds et al. 2020). For these trials, the mean of the
UW-mRS score was assumed be normally distributed which
is appropriate if the CLT applies. Our approach differs as we
construct the expected score using the estimated probabilities
of observing each level of the outcome, avoiding a distributional
assumption on the expected score. That is, our approach does
not rely on an assumption of normality, as the expected score
is structurally bound to exist in the observable scoring range
of the outcome of interest. Treatment success is defined as
a significant reduction in the expected score in either of the
treatment arms relative to control. As such, without loss of

generality, let S; represent the expected score for the control
arm of the study. Then, we define the posterior probability of
treatment success for treatment arm ¢t as Pr(S;<Sy).

3.2. Comparators

We will compare our approach to three other analytic choices: ¢-
test, Wilcoxon rank sum, and proportional odds regression. For
the t-test and wilcoxon rank sum tests, each active treatment
arm will be independently compared against the control arm
using a one-sided test. For the proportional odds regression,
letting Tjp represent an indicator variable which equals 1 if
subject i is in the low dose KET arm and 0 otherwise and letting
Tim represent an indicator variable which equals 1 if subject i
is in the high dose KET arm and 0 otherwise, we construct the
model shown below:

logit (P (xis< 1)) = Bo+P1 x Tir+Pax Tin.

Similar to that of the t-test and Wilxocon rank sum tests, we will
test 81 and B, independently using one-sided tests.

3.3. Response-Adaptive Randomization

In simulated designs which use RAR, it will be used to allocate
subjects to the better performing KET arm in order to maximize
the likelihood of patient benefit. For these simulations, the ran-
domization scheme will be equal allocation (1:1:1) for the first
100 patients. Once the primary outcome has been obtained for
the first 100 subjects, the RAR will update the allocation prob-
abilities with subsequent updates occurring every 100 patients.
Let A, represent the allocation to treatment group t at interim
analysis m where m = 1,...,M. This allocation rate is calculated
using Ay = %, where R,y = +/Pr(S; < S;). Allocation to
the active control arm will be fixed at 33 subjects per enrollment
block in order to maintain adequate power. Allocation to treat-
ment arm ¢t will be set to 0 if A, < 0.1, but allocation can begin
again at the next interim if A,,,; > 0.1.

3.4. Interim Analyses for Early Stopping

In addition to assessing the impact of RAR, we will evaluate
designs which allow for early trial termination due to over-
whelming efficacy or futility. For designs which allow for early
termination, three interim analyses will occur. The first interim
will occur once the primary outcome has been obtained for
the first 300 subjects and will occur additionally once 400 and
500 primary outcomes have been received. For all frequen-
tist approaches (t-test, wilcoxon rank sum, and proportional
odds model), early efficacy boundaries were determined using
a Hwang-Shih-DeCani spending function with parameter set
to —4 to create O’Brien-Fleming-like boundaries (Hwang, Shih,
and De Cani 1990). The boundaries were created assuming a
one-sided Type I error rate of 1.25% per active treatment arm,
to provide an overall one-sided Type I error rate of 2.5%, and
10% Type II error. Following the approach by Shi and Yin, who
demonstrated the translatability between frequentist p-values
and Bayesian posterior probabilities, we derived equivalent early
stopping criteria for our Bayesian design (Shi and Yin 2021).
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Figure 1. Probability of outcome and expected score for all simulation conditions.

3.5. Success Criteria at Analysis

Let 2.y, be the critical value and p,,, the corresponding p-value
required at the mth analysis according to the Hwang-Shih-
DeCani spending function to declare overwhelming efficacy for
a single treatment arm. For a trial design which uses a frequen-
tist analytic method (¢-test, Wilcoxon rank sum, or proportional
odds), the trial will be terminated early for overwhelming effi-
cacy if the resultant p-value for either treatment arm is less than
Pem for either active treatment arm. For the Bayesian expected
score approach, we will terminate the trial for overwhelming
efficacy if Pr(S, < S1) > (1 —pem) or Pr (83 < 1) > (1 —pem) -

3.6. Stopping for Overwhelming Futility

Let z5, be the critical value and pj, the corresponding p-
value required at the mth analysis according to the Hwang-
Shih-DeCani spending function to declare overwhelming futil-
ity for a single treatment arm. For a trial design which uses
a frequentist analytic method (¢-test, Wilcoxon rank sum, or
proportional odds), the trial will be terminated early for over-
whelming futility if the resultant p-value is greater than pyy, for
both active treatment arms. For the Bayesian expected score
approach, we will terminate the trial for overwhelming futility
if Pr(S2 < S1) < (1 — pm) and Pr(S3 < S1) < (1 — ppin) -

4. Naive Frequentist Sample Size

Based on a previous trial by this team (ESETT) of 478 patients,
we found the proportion of LEV patients in each ordinal

category (Kapur et al. 2019; Chamberlain et al. 2020). Initial
sample size estimates were 220 per group using the following
assumptions:

1. 90% power,

2. 2.5% Type I error (one-sided),

3. two-sample Wilcoxon Rank Sum test where the proportions
in the LEV group are (1 = 41%, 2 = 11%, 3 = 10%, 4 =
38%, 5 = 0% as observed in ESETT) and the proportions in
either of the KET dose groups is (1 = 46%, 2 = 20%, 3 =
20%, 4 = 14%, 5 = 0%) is 220 subjects per group. Based on
clinical discussion this was a meaningful improvement in this
population and represents the clinically important difference.

5. Simulation Study

To evaluate the proposed design and compare it to the ini-
tial analytic approach, we evaluated our model under a wide
range of conditions in simulation. Specifically, we tested our
model under no treatment effect and seven conditions where
there was a treatment effect. These simulation conditions are
shown in Figure 1. Initially, simulations were conducted with
a maximum total N = 660 (our naive sample size), but were
redone with a lower maximum because the naive maximum
exceeded 99% power in most conditions, including the clinically
important difference stated above. The simulations presented
here assumed a maximum sample size of 600. In Figure 1, Con-
dition 1 represents the null case where neither of the treatment
arms differ from the control arm. Conditions 2 through 6 all
provide an improvement relative to control, with Condition 2
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representing the clinically important difference. Conditions 7
and 8 reflect situations where the treatment is detrimental to
patient outcomes. All conditions assumed score 5 was 0%.

For the nonzero treatment effect conditions, we evaluated
our model in scenarios where one arm had no treatment effect
with the other having a treatment effect and where both arms
had a treatment effect. We will henceforth reference the con-
ditions where one arm had a treatment effect as “One Different
Arm” and the conditions where both arms had a treatment effect
as “Two Different Arms” We further investigated the impact
of using RAR and allowing for early stopping at an interim
analysis due to overwhelming efficacy or futility. Our simula-
tions were conducted in R using the R library nimble, where
the model was provided with 10,000 burn-in iterations, 15,000
total iterations, with the samples not thinned. As such, inference
is based oft 5000 iterations. We generated 10,000 datasets per
condition.

6. Results

Tables 1-4 show the probability of declaring either active
treatment arm as providing statistically significant benefit
relative to control. Table 1 presents the results for a design
which uses RAR and interim analyses to allow for early

stopping. Table 2 shows the results for a design which uses
RAR but does not have interim analyses to allow for early
stopping. Table 3 presents the results for a design which does
not uses RAR but does have interim analyses to allow for early
stopping. Table 4 shows the results for a design which does not
use RAR and does not have interim analyses to allow for early
stopping. From these tables, we see that Type I error is near
1.25% per arm for all conditions where there is no treatment
effect. For the Two Different Arms simulation, it is worth noting
that the probability of declaring at least one arm significant
would be the sum of the three probabilities listed in each of
the tables. When comparing the results in Tables 1 and 2 to
the results in Tables 3 and 4, we can see that the utilization of
RAR provides an increase in power when there is one treatment
arm which provides benefit relative to control with the other
arm not providing benefit. Further, we see that utilization of
the Hwang-Shih-DeCani spending functions for early stopping
criteria results in no significant changes in the Type I error
and power when compared to designs which do not allow for
early termination. Lastly, Table 5 shows the average sample size
for the designs which have interim analyses to allow for early
stopping and demonstrates that there is a substantial reduction
in the expected number of enrolled subjects when allowing for
early termination for overwhelming efficacy or futility.

Table 1. Probability of declaring a treatment arm successful across simulation conditions for designs with RAR and interim analyses which allow for early stopping.

Simulation Condition Expected Score Wilcoxon rank sum t-test Proportional odds
Null 1 0.013]0.012|0.001 0.013]0.011|0 0.013]0.011]0.001 0.013/0.011]0.001
One different 2 0]0.898|0.002 0]0.824/0.002 0[0.895/0.002 0.001/0.81|0.005
3 0/0.972/0.002 0/0.958/0.001 0[0.971]0.002 0]0.956/0.002
4 0.002|0.535/0.004 0.002|0.4860.004 0.002|0.53]0.004 0.003|0.474]0.005
5 0]0.985/0.002 0]0.959]0.002 0[0.984/0.001 0]0.955/0.004
6 0]0.999/0.001 0/0.998/0.001 0]0.999|0.001 0/0.997|0.002
7 0.012/0[0 0.012/0[0 0.011/0J0 0.015/0j0
8 0.011/0.004|0 0.011]0.004/0 0.011]0.004/0 0.021/0.002|0
Two different 2 0.29]0.302/0.361 0.275/0.286/0.33 0.289|0.301/0.36 0.271|0.287|0.352
3 0.267|0.27|0.455 0.275]0.274|0.437 0.267|0.268|0.457 0.267(0.268|0.452
4 0.271]0.2560.148 0.243|0.232|0.138 0.269|0.255|0.146 0.251/0.238|0.147
5 0.238/0.243|0.515 0.256/0.261|0.463 0.237|0.244/0.514 0.245|0.253|0.487
6 0.064/0.06|0.876 0.145]0.135/0.72 0.067|0.065|0.868 0.125[0.117|0.757
7 0jojo 0[ojo 0[ojo 0jojo
8 0.003]0.004|0 0.003]0.004/0.001 0.003]0.004|0 0.005/0.006]0.001

NOTE: Cells are interpreted as “Probability of declaring Low Dose KET arm successful and not High Dose KET|Probability of declaring High Dose KET arm successful not Low

Dose KET|Probability of declaring both Low and High Dose KET arms successfu

Table 2. Probability of declaring a treatment arm successful across simulation conditions for designs with RAR and no interim analyses to allow for early stopping.

Simulation Condition Expected Score Wilcoxon rank sum t-test Proportional odds
Null 1 0.012/0.012/0.001 0.012/0.011/0.002 0.012/0.011/0.001 0.012]0.011/0.001
2 00.899|0.014 0[0.83/0.013 0[0.897/0.014 0]0.814{0.02
3 0]0.968|0.011 0[0.955/0.011 0[0.967]0.011 0]0.952/0.013
4 0/0.546/0.012 0[0.497/0.012 0[0.543/0.012 0.001]0.485|0.015
5 0]0.978|0.012 0[0.956/0.011 0[0.978/0.011 0]0.949|0.017
One different 6 0]0.988|0.012 0[0.988]0.012 0[0.988]0.012 0]0.982/0.018
7 0.013|0j0 0.012|0j0 0.012|0j0 0.015/0[0
8 0.011/0.003|0.001 0.01]0.0030.001 0.011]0.0030.001 0.017|0.002|0.001
Two different 2 0.066/0.072|0.819 0.087(0.094/0.719 0.067|0.073|0.816 0.078/0.087|0.754
3 0.027|0.027|0.94 0.036/0.037|0.916 0.028]0.027]0.938 0.033]0.033|0.924
4 0.16/0.16|0.366 0.151]0.147(0.327 0.161]0.157|0.363 0.151/0.148|0.347
5 0.013|0.016]0.968 0.031]0.035[0.917 0.013]0.016/0.968 0.026|0.031/0.93
6 0/0]1 0.002|0.001|0.996 0lo|1 0.002|0.001]0.997
7 0jojo 0[0j0 0[0jo 0/0j0
8 0.002]0.004|0 0.002]0.004/0.001 0.002|0.004|0 0.004/0.006/0.001

NOTE: Cells are interpreted as “Probability of declaring Low Dose KET arm successful and not High Dose KET|Probability of declaring High Dose KET arm successful not Low

Dose KET|Probability of declaring both Low and High Dose KET arms successful.”
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Table 3. Probability of declaring a treatment arm successful across simulation conditions for designs with no RAR and interim analyses to allow for early stopping.

Simulation Condition Expected Score Wilcoxon rank sum t-test Proportional odds
Null 1 0.012/0.01/0.001 0.011]0.01/0.001 0.012/0.01|0 0.011]0.01/0.001
One different 2 0]0.875/0.002 0[0.792|0.002 0[0.871]0.001 0.001/0.77|0.004
3 0[0.963/0.002 0/0.948|0.002 0/0.963|0.002 0]0.943/0.003
4 0.002|0.512|0.004 0.001]0.4620.003 0.001]0.509]0.003 0.002|0.447|0.004
5 0]0.974/0.002 0]0.939]0.002 0[0.974]0.002 0[0.93]0.004
6 0[0.998|0.002 0(0.997|0.001 0]0.999|0.001 0]0.995/0.003
7 0.014{0/0 0.012[0jo 0.013[0j0 0.017/0j0
8 0.012|0.003|0.001 0.011]0.004/0.001 0.012]0.004/0.001 0.022|0.0030.001
Two different 2 0.306]0.295|0.356 0.287|0.281]0.331 0.305/0.296|0.354 0.287|0.278|0.352
3 0.264/0.265|0.464 0.27|0.274(0.443 0.263]0.2640.466 0.261]0.264|0.463
4 0.269|0.269|0.148 0.246|0.24]0.136 0.266]0.268]0.146 0.25[0.25(0.144
5 0.237]|0.231|0.527 0.259|0.253|0.467 0.239|0.236|0.521 0.253|0.247|0.484
6 0.064/0.059|0.877 0.133]0.1360.731 0.066|0.064|0.869 0.116]0.116|0.768
7 0[0.001]0 0[0.001[0 0[0.001[0 0[0.001]0
8 0.003|0.004/0 0.004/0.004|0 0.003/0.004|0 0.006|0.006(0.001

NOTE: Cells are interpreted as “Probability of declaring Low Dose KET arm successful and not High Dose KET|Probability of declaring High Dose KET arm successful not Low

Dose KET|Probability of declaring both Low and High Dose KET arms successful.”

Table 4. Probability of declaring a treatment arm successful across simulation conditions for designs with no RAR and no interim analyses to allow for early stopping.

Simulation Condition Expected Score Wilcoxon rank sum t-test Proportional odds
Null 1 0.013/0.01/0.002 0.012]0.009]0.002 0.012]0.009]0.002 0.011]0.009|0.002
One different 2 0[0.876/0.011 0/0.8]0.011 0/0.876/0.01 0[0.771/0.017

3 0]0.959|0.012 0[0.948]0.011 00.959]0.012 0[0.941/0.015

4 0.001]0.522/0.013 0/0.472/0.012 0.001/0.517/0.013 0.001|0.454/0.015

5 0]0.969|0.013 00.934/0.013 0[0.968|0.013 0[0.925/0.018

6 0]0.987/0.013 0]0.986]0.012 00.987/0.013 0[0.98]0.019

7 0.014/0j0 0.013|0j0 0.013|0j0 0.017/|0j0

8 0.011]0.004|0.001 0.011]0.004/0.001 0.011]0.004/0.001 0.02/0.002(0.002
Two different 2 0.068|0.061|0.832 0.085/0.086(0.734 0.068]0.061/0.83 0.079]0.079|0.766

3 0.022]0.0240.948 0.03]0.034|0.924 0.022|0.025]0.946 0.028]0.031]0.93

4 0.157|0.158|0.381 0.148|0.147/0.338 0.157/0.156/0.377 0.149|0.147|0.357

5 0.015/0.013]0.968 0.037/0.034/0.912 0.015/0.014/0.967 0.03]0.03/0.926

6 olo[1 0.001/0.001]0.998 0[0|1 0.001]0.0010.998

7 0[0j0 0[0jo 0[ojo 0[0[0

8 0.003|0.003|0.001 0.003|0.0030.001 0.003|0.0030.001 0.004/0.004|0.002

NOTE: Cells are interpreted as “Probability of declaring Low Dose KET arm successful and not High Dose KET|Probability of declaring High Dose KET arm successful not Low

Dose KET|Probability of declaring both Low and High Dose KET arms successful.”

Table 5. Average sample size across simulation conditions for designs with interim analyses which allow for early stopping.

Simulation

Condition

Expected Score

Wilcoxon rank sum

t-test

Proportional odds

Null
One different

Two different

oONOOUThAWNONOOULID WN =

406.68 [410.41
428.6 1436.21

381.84|389.89
493.11 491.24
365.99 373.54
307.59310.06
379.49 |381.69
39278 |395.4

400.11{397.47
354.41|351.78
482.94 |483.96
342.21343.09
303.33|303.14
331.12332.06
375.09 |376.61

406.81(410.13
453.77 |460.42
395.83 |405.19
495.05 [494.51
398.88 |407.73
326.57 334.16
379.39381.48
389.95(392.75
433.44 1430.88
369.85 |367.39
491.68 |493.23
374.61|376.43
317.01317.18
331.46[332.5

370.78 371.56

406.21 [410.12
432.97 [439.24
384.72|392.46
494.6 1492.83
369.77 |375.62
308.53311.03
379.39 |381.55
392.33[395.01
404.08 [401
356.7 |354.58
485.34 1485.98
344.92 |345.72
303.71303.65
330.99331.99
374.93|376.38

406.87 |410.22
460.53 |469.08
398.42409.2

497.07 |496.69
403.55 |415.54
328.67(338.29
380.37382.83
391.52(394.9

4183 |415.75

364.28(362.36
486.35 |487.54
365.09365.83
312.98|313.03
331.7[332.94

372.64|373.53

Cells are interpreted as “Average sample size for design with interim analysis with early stopping criteria and with RAR |Average sample size for design with interim analysis

with early stopping criteria and without RAR".

7. Discussion

In order to assess our proposed Bayesian, adaptive design for
an ordinal outcome, we conducted a simulation study for a
wide range of distributions of ordinal scores, including some
extreme cases that are not clinically expected (Conditions 4
and 8). The power and Type I error rate were well controlled
under all scenarios of clinical interest. With this design we
were able to use a Bayesian framework for the ordinal outcome
and reduce the average sample size through the inclusion of

pre-specified adaptations. Further, we found that our proposed
approach is similar to the t-test, with both approaches having
similar Type I error, power, and average sample sizes. Addi-
tionally, it is worth nothing that the results for the propor-
tional odds model are similar to that of the Wilcoxon rank
sum test, which is consistent with the finding that the propor-
tional odds model is asymptotically equivalent to the rank sum
test regardless of if the proportional odds assumption holds
(Harrell 2015).
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All simulations assumed the same distribution for the control
group (LEV), which based on previous studies was expected to
be bimodal and concentrated in both extremes. It is likely that
a different underlying control group distribution of scores or
changes in assumed treatment effect would result in different
operating characteristics, including scenarios in which the nor-
mality assumption or proportional odds may be optimal. Never-
theless, these results are encouraging and provide an approach
which may prove useful for other settings. As with the rank
sum test, our approach does not immediately generalize into a
framework for which we can adjust for baseline covariates.

Many find ordinal outcomes more difficult to interpret than
a binary response rate. This could be because of confusion
around the meaning of measures of central tendency for ordinal
outcomes, if they are not commonly in use. The ordinal outcome
for KESETT is new and was developed by the KESETT clini-
cal investigators following the desirability of outcome ranking
(DOOR) approach (Evans et al. 2015; Evans and Follmann
2016). The expected score is approximately equivalent to the
mean of the ordinal outcome and can be analyzed without
assuming normality of the mean. For the KESETT design, the
clinically important difference in the outcome probabilities rep-
resented a difference in expected scores of 0.43 (2.45 for LEV
alone vs. 2.02 for add-on treatment group). Changes to the cod-
ing of this scale would affect the interpretation of the expected
score, as well as the operating characteristics. These scale cod-
ings should be clinically determined and benchmarked with
previous large trials to define clinically important differences.

Motivated by a trial in status epilepticus, we have developed
a Bayesian, response-adaptive design for ordinal data which is
applicable without the assumptions of normality of the mean or
proportionality of the odds. Our approach performs similarly
to the ¢-test and maintains optimal operating characteristics for
our defined clinically important difference.
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