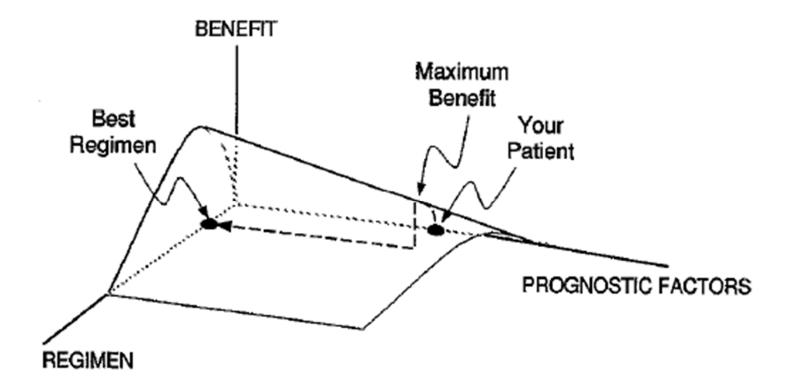
Understanding Simulations and Their Value in Clinical Trial Planning

William Meurer, MD, MS Scott Berry, PhD


Objectives

- Understand why clinical trial simulation is needed
- Have familiarity with the general conduct of clinical trial simulations
- Be able to interpret clinical trial simulation results.

Learning vs. Confirming

- Learn to treat patients
 - Who
 - How
 - When
 - How long...
- Confirm treatment works

Therapeutic Response Surface

"I have always considered it more desirable to kill computer-generated patients than real ones when calibrating design parameters." Peter Thall

Chance 2001;14:23-8

Flexible Adaptive Designs

- May not have a direct analytical method for evaluating Type I and Type II error
- Simulation also allows estimation of the impact of various real-life clinical trial problems (not limited to adaptive designs)
 - Missing data
 - Choice of endpoint
 - Patient population
 - Covariate impact

PROBABILITY AND STATISTICS IN COMPLEX SYSTEMS:

GENOMICS, NETWORKS, AND FINANCIAL ENGINEERING

ORGANIZING COMMITTEE

N

BRSKAM

s

A M SI A W F

					INSTITUTE FOR MATHEMA	INCO AND TTO AFFEIGATIONS
MARCO AVELLANEDA	COURANT INSTITUTE, NYU				400 LIND HALL, 207 CHUR	RCH ST. S.E.
BRUCE HAJEK	UNIVERSITY OF ILLINOIS, URBANA	State In the s			MINNEAPOLIS, MN 554554	
RICHARD KARP SALLIE KELLER-MCNULTY	UC BERKELEY LOS ÁLAMOS NATIONAL LABS		and the second second	L Ker Star Star Star Star Star Star Star Sta	TELEPHONE:	(612) 624-6066
	NIVERSITY OF WISCONSIN, MADISON	AND A PROVINCE	Sector Care	V VI man	FAX	(612) 626-7370
ANDREWLO	MIT	TONT & SATVIN			E-MAIL:	IMA-STAFF@IMA.UMN.EDU
	NIVERSITY OF WISCONSIN, MADISON	- 🧖 – 🦧 – 🖓 Martin			URL:	WWW.IMA.UMN.EDU
	NERSITY OF BOUTHERN CALIFORNIA			the the state		
WALTER WILLINGER	AT&T LABS-RESEARCH					FEBRUARY
				the set	JANUARY	
APPLICATIONS ARE IN	MTED FOR POSTDOCTORAL	The second second			SMTWTHFS	SMTWTHFS
MEMBERSHIPS (TWO	YEAR APPOINTMENTS) AND	THE AND IN			123	1234567
SENIOR MEMBERSHIPS	(FOR ONE TO NINE MONTHS),		MALLAL 🔨		4 5 6 7 8 9 10	8 9 1011 12 13 14
AND FOR INVITATIONS TO	INDIVIDUAL WORKSHOPS. SEE		MAAIN /		11 12 13 14 15 16 17	15161718192021
WWW.IMA.UMN.ED	U/DOCS/FORMS.HTML	STAL /		× / X	18 19 20 21 22 23 24	22 23 24 25 26 27 28 29
FOR APPLICATION IN	STRUCTIONS AND FORMS.	ATT I HAN	, XV X	$-\sqrt{L}$	25262728293031	2.0
		The states	XXX ZX		1	APRIL
SEPTEMBER	OCTOBER	The self of the	XXXX / Yem	A Fred	MARCH	
SMTWTHFS	SMTWTHFS	ZI/NEASUP V		$\gamma \gamma $	SMTWTHFS	SMTWTHFS
123456	1234	711 1 2 2 2 7			123456	4 5 6 7 8 9 10
7 8 9 10 11 12 13	567891011	1 draw w			7 8 9 10 11 12 13	11 12 13 14 15 16 17
1415 16 17 18 19 20	12131415161718				14 15 16 17 18 19 20	
21 22 23 24 25 26 27	19 20 21 22 23 24 25	THE ARK NOW	RIV XIV		21 22 23 24 25 26 27	18 19 20 21 22 23 24
28 29 30	26 27 28 29 30 31				28 29 30 31	2526 27 28 29 30
	030000577	K X XX YM	the start of the			
					MAY	JUNE
NOVEMBER	DECEMBER				SMTWTHFS	SMTWTHFS
SMTWTHFS	SMTWTHFS	A The	MARIA Pres			12345
1	123456		SALANDA TSS / / //	VI	2345678	6789101112
2345678	78910111213		新学校で来てく AX	/ *	9 10 11 12 13 14 15	13 14 15 16 17 18 19
9 10 11 12 13 14 15	14151617181920				16 17 18 19 20 21 22	20 21 22 23 24 25 26
16 17 18 19 20 21 22	21 22 23 24 25 26 27	NY AL AND	A AND IN IN	$\langle \rangle$	23 24 25 26 27 28 29	× 27 28 29 30
23 24 25 26 27 28 29	28 29 30 31	The AR	R 1 N N 1/ V		30 31	
30			1 0000			
	11/	SEPTEMBER	1, 2003 - JL	INE 30, 200	47 1437	
	COMPLET	TE IMA PROCRAM INFORM	ATION IS ONH INE AT WA	WWIMA LIMN FDU/CO	OMPLEX	

COMPLETE IMA PROGRAM INFORMATION IS ON-LINE AT: WWW.IMA.UMN.EDU/COMPLEX

FALL QUARTER (SEPTEMBER · DECEMBER, 2003)

MATHEMATICAL & STATISTICAL PROBLEMS IN GENOME SCIENCES

WINTER QUARTER (JANUARY - MARCH, 2004)

COMMUNICATION NETWORKS

SPRING QUARTER (APRIL - JUNE, 2004)

QUANTITATIVE MODELING IN FINANCE AND ECONOMETRICS

507124607 15-19, 2003 507124607 29-0070607 3, 2003 00703607 20-24, 2003 November 17-21, 2003

JANUARY 7-3, 2004 JANUARY 11, 2004 JANUARY 12, 1004 Fisheluary 8, 2004 Fisheluary 8-13, 2004 March 7, 2004 March 7, 2004

MARCH 29 - APHL 2, 2004 APRIL 12 -16, 2004 MAY 31 - 7, 2004 MAY 24 - 28, 2006

OPENING WEEK TUTORIALS

VYORBAND TI STATISTICAL METHODS FOR SIDE EXPERIMENT MOROARAYS AND PROTEOSECS VYORBAND 2. COMPARITY CERTICALS VYORBAND 2. COMPARITY CERTICALS

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

WORKSHOP 2: NETWORKS AND THE POPULATION DYNAMICS OF DREAME TRANSMISSION

EHORT COURSE THE NETERNET FOR MATHEMATICIANS TUTCHAL: MEASUREMENT, MODELINS AND ANALYSIS OF THE INTERNET WORKSHOP & MEASUREMENT, MODELINS AND ANALYSIS OF THE INTERNET TUTCHAL: ROBUSTNESS AND THE INTERNET: DESIGN, EVOLUTION, AND THEORETICAL POLYDATIONS WORKSHOP IS: ROBUSTNESS IN COMPLEX SENTIME TUTCHAL: CONTROL AND MICHON IN COMPLEX SENTIME

NORMAC CONTROL AND PRICING IN COMMUNICATION AND POWER NETWORKS WORKSHOP IS COMPROL AND PRICING IN COMMUNICATION AND POWER NETWORKS

SHORT COURSE: TOOLS FOR MODELING AND DATA ANALYSIS IN FINANCE/ABERT PRICESS WORKHOP 27 TRIK MARAGEMENT AND MODEL APECIFICATIONS INFURING IN PRANCE WORKHOP 25 TRIK MARAGEMENTATION ALD ATTEMP AND SOFTWARE BARLED WORKHOP 25 TRIMMCUL, DATA ANALYSIS AND AND APPLICATIONS

The Presentation Of Simulation Results – By Phenotype

Statistician/Quantitative

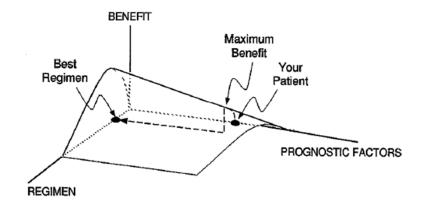
- -Data generation
 - Realistic
 - Transparent
- -Analysis Methods
 - Robust
 - Precise
 - Unbiased
 - Reproducible

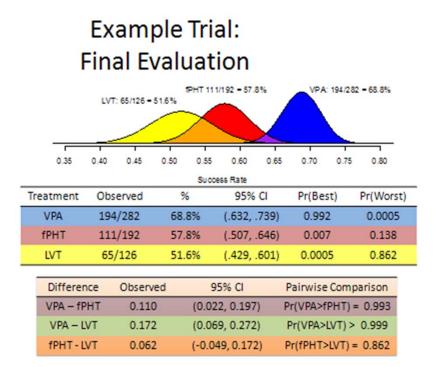
Clinician/Sponsor

- -Decision making
 - Trial output
- Performance
 - Competing designs
 - Sample size
 - Type I and II error
 - Answering the question?

Name this car

Barriers


- Up front cost
- In academia, no funding for this sort of rigorous planning
- Simulation has occurred haphazardly in past (diminishing its value in some eyes)
- Reporting of simulation studies in biomedical literature often incomplete*


February 22, 2013 2:40 PM John De Goes 23 Comments

Simulations, Scenarios, Sample Trials

- Adaptive designs simulate trials to see how "machine" works
- Scenarios stress test the machine under different assumed truths (all drugs the same, 1 really good, etc)
- Sample Trial watch progress of virtual trial (as a DSMB would)
- Simulations reports aggregate the results of MANY sample trials

Remember these from yesterday

Operating Characteristics

Scenario 3 Efficacy Rates	Pr(ID Best) Early-End	Pr(Randomize To Best)	Mean N
Null 0.5 – 0.5 – 0.5	0.020	100%	545
One Good 0.5 - 0.5 - 0.65	0.939	48%	494
Two Good 0.5 - 0.65 - 0.65	0.109	87%	753
One Middle One Good 0.5 – 0.575 – 0.65	0.536	48%	635
All Bad 0.10 - 0.10 - 0.10	0.005	100%	400

Simulations

Scott M. Berry April 10, 2013 berryconsultants.com

What Stage/Phase of CT?

- Phase I:
 - Sample size
 - Dose escalation
 - Combination of arms
 - Seamless phase I-II
- Phase II/Pilot:
 - Sample size
 - Dose allocation
 - Introduce/Drop arms
 - Enrichment
 - Prediction of Phase III
 - Seamless phase II-III

- Phase III/Confirmatory:
 - Sample size
 - Multiple Arms
 - Accrual Interim Analyses
 - Futility Analyses
 - Timing of Conclusions
 - Enrichment
- Phase IV:
 - Sample size
 - Timing of Conclusions
 - Indications

Therapeutic Areas/Diseases

- Oncology
- Migraine
- Lupus
- Sepsis ۲
- Diabetes •
- Obesity ٠
- Stroke
- Tinnitus
- MS ۲
- CHD
- Smoking Cessation
- Gastroparesis
- **Alzheimers** ADAPT-IT

Atrial **Fibrillation**

•

- Cancer ۲ diagnostic
- Disc Disease
- Contraceptives
- Valves/stents
- Asthma
- Emphysema
- PFO
- RA

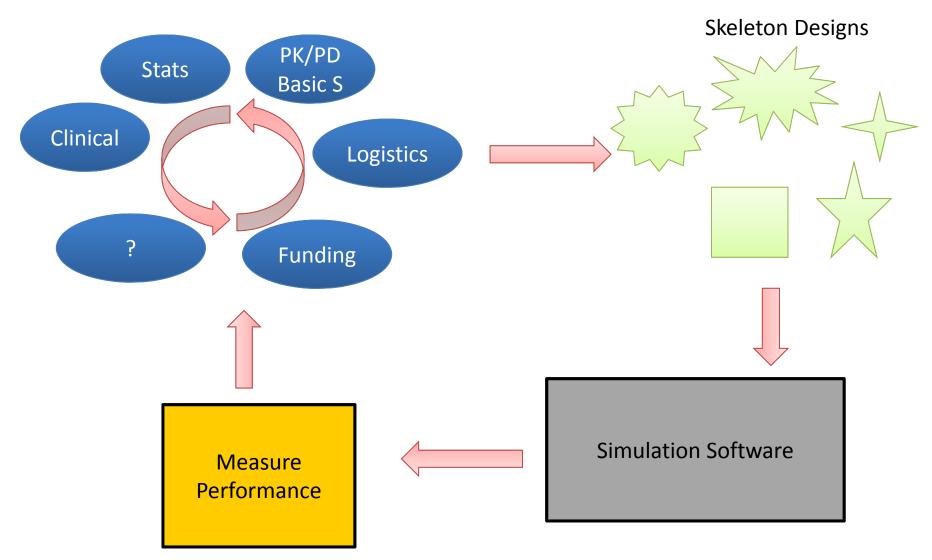
•

- Sleep Apnea
- Osteoparesis
- **Parkinsons**

- Pain ullet
- Hydrocephalus Emesis ullet
- HIV •
- Schizophrenia Infections • •

•

- Crohns •
- **Spinal Cord** Injury
- Hep C •
- Preterm Labor • •
- Constipation ullet
- Micturition • •
- Drooling ۲
- **PO lleus**
- DVT •


Sexual health

OAB •

Statins

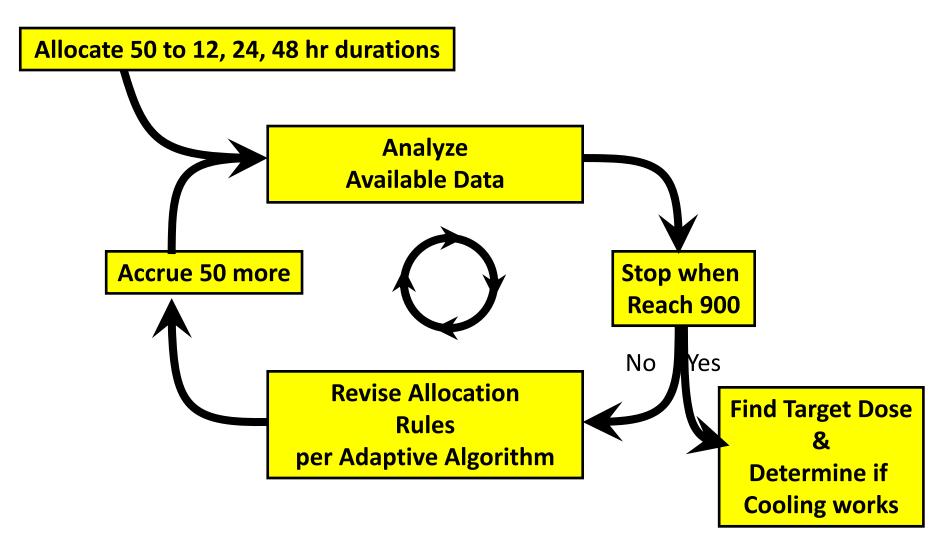
- TB •
- Head Trauma •
- Cardiac Arrest •
- ALS
- **Alcohol Abuse**
- SARI

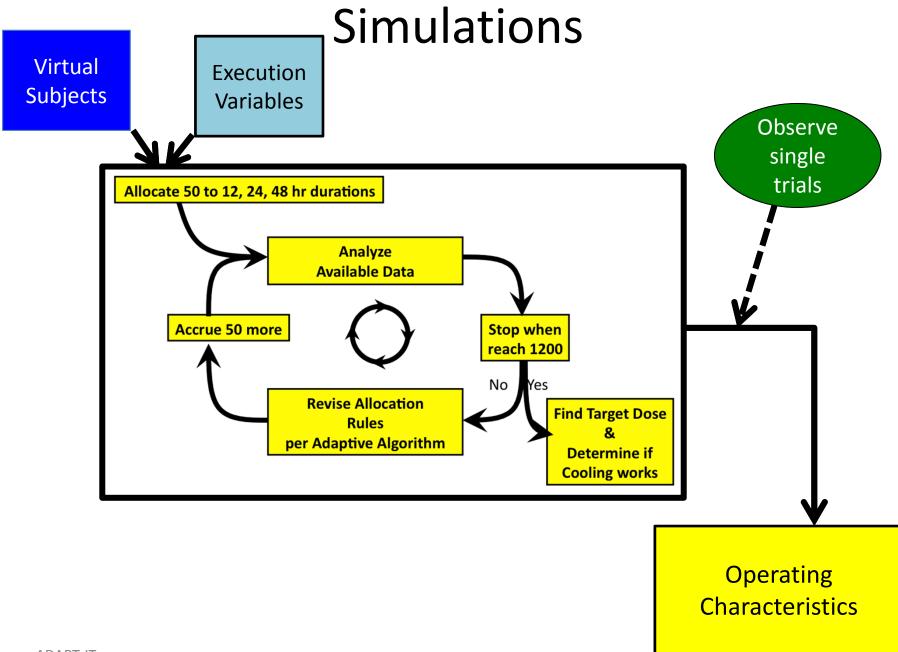
Design Process

ICECAP

"Under Construction"

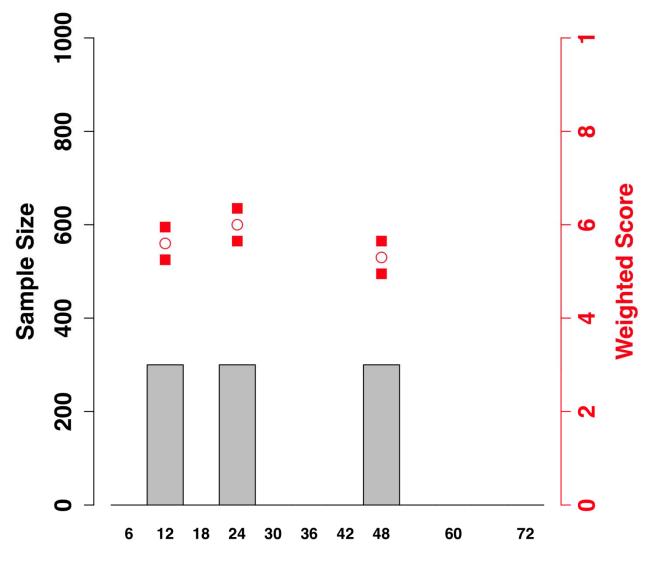
- ICECAP Hypothermia after post cardiac arrest coma
 - Background
 - Two small surface cooling trials demonstrated efficacy (different durations and endovascular cooling more frequently used)
 - Medically accepted that this works
 - No FDA approval
 - Goals
 - To identify optimum cooling duration
 - Gain additional insight into efficacy (functional form of duration response model)
 - What types of strokes vs. duration
 - Fixed Design:
 - 300? On 12, 24, 48 hours cooling

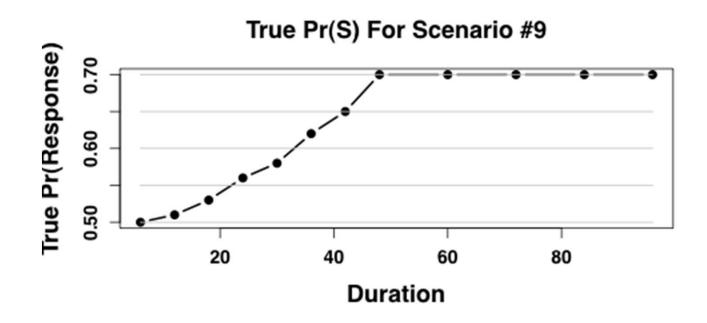

Initial skeleton

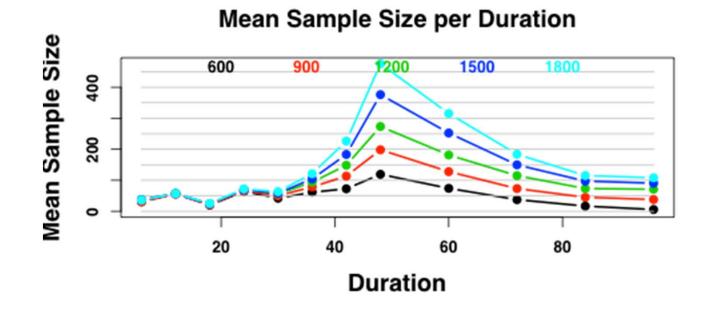

- Start with 12, 24, 48-hour durations (say 50/arm)
- Then analyze data and randomize to the best duration
 - Allow randomization to a much wider grid:

- 6, **12**, 18, **24**, 30, 36, 42, **48**, 60, 72

- Continue updating, say every 50 patients
- Continue to end of trial


Adaptive Algorithm




Example Outcome of Fixed

- Idealized Outcome?
- Answer All your questions?
- Do anything differently?

Role Simulations

- Incredible Learning Tool
 - Team, Regulators, Funders, DSMB, Operations
- Changed Models
- Changed measures of success
- Endpoint (dichotomous) wasn't correct
 - Weighted one
- Needed both rhythm types (shockable and nonshockable)
 - Possibly different duration, relative efficacy
- All recognized through flight simulator
 - Single example trials critical

Journal of Diabetes Science and Technology Volume 6, Issue 6, November 2012 © Diabetes Technology Society **ORIGINAL ARTICLE**

Application of Adaptive Design Methodology in Development of a Long acting Glucagon-like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

Zachary Skrivanek, Ph.D.,¹ Scott Berry, Ph.D,² Don Berry, Ph.D.,^{2,3} Jenny Chien, Ph.D.,¹ Mary Jane Geiger, M.D., Ph.D.,¹ James H. Anderson, Jr., M.D.,⁴ and Brenda Gaydos, Ph.D.⁵

- Lilly (seamless) Diabetes Trial
 - Trial went from 3 to 7 doses
 - Automatic selection of 2 doses (utility function)
 - Signaled additional phase III trials to start (doses)
 - Accrual rates 6-10/week
 - Control of Type I error

- Phase I II Seamless Oncology
 - Created hundreds of movies of escalation rules
 - Combined Adults/Kids
 - Simulations separated "rules" from "model borrowing"
 - Added Utility function for Tolerability & Efficacy

- X Tumor Agnostic
 - Rules for approval
 - By simulating many trials we could show FDA exactly what "success" meant
 - Can we approve with 1/1 ? Okay?
 - Added rules for minimum information needed to gain approval

- ARCTIC Trial
 - 3 durations of cooling for spinal cord injury vs. No Cooling
 - Adaptive randomization for full trial? Find and confirm best duration
 - Compared to AR, followed by 1:1 comparison phase (same maximum sample size)
 - Despite better performance, acceptability by community very important Two stage
 - Final results, trial examples

- SHINE Trial
 - Tight glucose control in hyperglycemic acute ischemic stroke patients
 - Use of blinded sample size re-estimation
 - During simulations of the procedure we noticed that when there is a treatment effect the sample size was almost always increased – then the trial may stop for superiority, or <u>be unnecessarily large</u>
 - Algorithm confused between treatment effect and larger variance

- Very Common:
 - We describe the design, and the first comment is:
 "Wow, that is way too complex"
 - We then show simulations of example trials:
 - "Could you add X, Y, and Z"
 - Brings a great deal of comfort!
 - You can do this!

Conclusions

- The trial is ready to run code written, structure ready
 - What data in needed?
- Risks for execution parameters known
- Trial has been carried out millions of times before it is run
 - It's as though team is adjusting the trial exactly as they should/would!
- The real trial shouldn't be the first time your trial is run.