Adaptive Designs Accelerating Promising Trials into Treatments Michael D. Fetters, Laurie Legocki, William Meurer, Shirley Frederiksen, Samkeliso Mawocha (U01NS073476) from the NIH Common Fund **LABioMed** Los Angeles Research Institute at Harbor-UCLA Medical Center ### Disclosures - The authors of this presentation have no conflict of interest to report - IRB approved UM - Participants advised of data collection, analysis, and plans for publication # Objectives-Lessons learned - What has worked in the our ACT development experience? - What have been the challenges during this experience? - How can clinical trial researchers and adaptive trial designers collaborate most effectively? # Mixed Methods AIM To study the collaborative process itself using mixed methods ### **ADAPT-IT Process** FTF - 1 - Investigators and statisticians meet - Discuss clinical problem and potential designs CTC - Berry Consultants present concept - Clinical & data teams provides feedback Perf WG - Simulations presented with feedback - Several iterations FTF - 2 - Near final design presentation - Work out final details for grant / IND submission # **Methods** - Prospective, mixed methods data collection - Qualitative - Mini Focus Groups (3-6 people) - SWOT (Strengths, Weaknesses, Opportunities, Threats) - Field observations-FTF1, CTC, PWG, FTF2, emails - Key Stakeholder Interviews - Quantitative - Visual analog scales with ranges from 0-100% - 13) Adaptive clinical trial designs pose ethical advantages from the patients' perspective. | | | | | • | |-------------------|-----------------|----------|----------|------------| | Definitely
Not | Probably
Not | Possibly | Probably | Definitely | | | | | | | Why?____ **Table 4. Qualitative Assessment Procedures** | Table 4. Qualitative Assessment Frocedures | | | | | | |--|--|---|--|--|--| | Purpose | Approach | Data Collection | Expected Outcome | | | | To understand the concerns and strategies of personnel participating in face-to-face (FTF) meetings, both prior to initiation of design activities (pre-FTF-1) and after completion of substantial design activities (pre-FTF-4) | Visual Analog scale ratings of
ACT features Pre-meeting Mini-Focus Group
Interviews (MFGIs) with 3
expert panels: (1) NETT clinical leadership (2) NETT statistical
leadership (3) Statisticians experienced
in ACT design | 7 VAS ratings per person on general ACT features (14* persons for 2 FTF meetings N=6 MFGIs (3 MFGIs prior to FTF-1 and 3 MFGIs prior to FTF-4) | Quantitative assessments of 7 general ACT features to be examined pre/post FTF meetings Identify variations in views of experts regarding potential value, barriers, risks, and advantages of ACTs Establish baseline views on ACTs to delineate how those views change after participating in design processes | | | | To understand interactions that occur during FTF meetings with respect to ACT development | Unstructured observations and
audio-recordings during 4 FTF
meetings to assess participant
non-verbal reactions | 32 hrs direct
observation (8
hours per 4 FTF
meetings | Process evaluation regarding
constructive and unconstructive
approaches to resolution of
disagreements during the
development of ACTs. | | | | To determine participants' assessments of each proposed ACT's strengths, weaknesses, and probability of success using both quantitative and qualitative measures | Administer Visual Analog Scale
(VAS)-based assessments
after the discussion of each
proposed trial in all 4 FTF
meetings Written, short-answer,
qualitative assessments at
each FTF meeting by all
participants | 6 VAS ratings per person on each trial (14* persons and 2 trials per meeting for 4 meetings N=72 (18* per FTF meeting) per 4 trials | Quantitative assessments of 6 ACT features per trial that will be compared with funding success Assessment by all participating members regarding the design and meeting processes Examination of degree that qualitative assessments support or conflict with VAS results | | | | To identify the views of stakeholders external to the project | Stakeholder Interviews
including NIH and FDA
personnel, patient advocates,
and peer reviewers | N=12 semi-
structured
telephone
interviews of key
informants in Year
1 and 2 | Stakeholders' knowledge and
views regarding potential value,
barriers, risks, and advantages of
ACTs | | | | To elicit assessments of participants on the ACT design process | Summative evaluations, using
individual interviews at end of
two years | N=12 evaluations
conducted in early
Year 3 | Global assessments of the clinical
trials design development
process | | | | To evaluate grant reviewer responses to submissions that include ACTs | Summary statement ("pink
sheets") document analysis of
4 trials submitted for funding | N=4 documents
of around 6
pages each in
year 3 | Grant reviewers' knowledge and views regarding potential value, barriers, risks, and advantages of ACTs | | | ^{*} While 18 people will participate in each face-to-face (FTF) meeting during a day, only 14 are anticipated to participate in the discussion of each individual trial. Note: Abbreviations: FTF face-to-face; ACTs Adaptive Clinical Trials; VAS Visual Analog Scale; MFGI Mini-Focus Group Interviews # Methods Analysis - Qualitative data - Transcription and data cleaning - Immersion in data - Atlas TI used for coding and analytics - Quantitative data - VAS portrayed using box plots - Integration - Parallel presentation using figures # Participant Characteristics - Four Constituent Groups (N=53) - network biostatisticians (n=5), - consultant biostatisticians (n=6), - clinicians (n=22), and - other stakeholders (n=20) including FDA, NIH and patient advocates. # Data Collection Procedures by Step Clinicians, academic statisticians, consultant statisticians, other stakeholders (FDA, NIH, patient advocate | Steps | Data Collection Procedures | | | | | |------------|--|-------------------------|-------------------------|----------------------------------|------------------| | | Mini FG | VAS | Short
Answer | SWOT | Field Notes | | FTF1 | 15 Qs,
5 MFGs
N=22
participants | 21 Qs X 25 participants | 15 Qs X 25 participants | 15-5/trial
24
participants | 1-2/trial
N=8 | | CTC | - | - | - | - | N=5 | | Perf
WG | - | - | - | - | N=5 | | FTF2 | - | 21 Qs X 37 participants | N=37 | N=11 | 1-2/trial
N=8 | ### Stakeholder Interviews #### External – completed | • | | | |-----------|---|--| | | N=10 | | | Who | 2 NIH 2 FDA 3 Pt Advocates 2 Study Section 1 Clin Opin leader | | | Age range | 40 to 60 | | | Gender | 4 F
6 M | | #### Internal – projected | | N=10 | |-----------|--| | Who | 6 PIs Co-Is Acad Statisticians 3 Consult Statisticians | | Age range | TBD | | Gender | TBD | Forthcoming: Qualitative analysis of Pink Sheets # Questions - General impressions ACTs - Experience with ACTs - NIH grant review panels response to ACT designs for Phase II, Phase III trials (experiences/views) - Ethical dimensions of ACT designs (experiences/views) - Journal peer review of ACTs (experiences/views) - ACTs change clinical practice (experiences/views) # Stakeholder General Impressions/Experience - Vast majority of experience in adaptations among consultant statisticians and ADAPT-IT project investigators - Among trialists, highly limited experience in actual research/peer-review, but high interest - Variety of understandings regarding what adaptations encompass # Diverging Stakeholder Anchors on Ethical Aspects of Trials Adaptive clinical trial designs pose ethical advantages from the patients' perspective. - It depends on the design, but it may be more advantageous to have a higher probability of being randomized to the active arm. (academic Stat VAS) - When done well they [ACTs] treat patients in and out of the trial better (Consult Stat VAS) - I think it only makes sense that if you are going to avoid exposing subjects to ineffective therapies that that's the ethically obligatory thing to do. (Clin MFG) - There is no problem explaining to patient that if we find one are to be clearly inferior we drop it, and one to be clearly superior we'll stop [the trial] early. (Clin MFG) - Patients [in an ACT] are shunted to the more promising area as a difference develops [between two arms]; for the first time, patients may actualize benefit from being a subject (Other VAS) ### **Lessons Learned: What worked?** Developing a team and developing trust - Unique roles: Clinicians, academic statisticians, academic statisticians, project officers - Trust building critical ### **Lessons Learned: What worked?** #### Face-to-Face time - Statisticians and consulting ACT designers need direct (face-to-face) time to work out detailed modeling issues - Would not necessarily benefit from real-time involvement of clinician researchers # **Lessons Learned: What Worked?** ### Starting early - How much is candidate trial already developed? - Change an existing trial SHINE - Redesign a project ARCTIC - Design from scratch ESETT, ICECAP, PROSPECT - Inventory all the assumptions and compromises about your vision of the trial design - Only going to test one dose - Exclude elderly patients because... # Challenges: What is an ACT? The definitions, nomenclature and taxonomy are incompletely understood in the broader medical and statistical communities - Understanding the rationale for clinical trial simulations - Presenting, interpreting, and grasping the results of clinical trial simulations Funding the planning and simulations necessary to develop a rigorous design - What pros/cons for using a more complex design compared to a traditional design? - I.e., are you getting adequate bang for your buck as the design becomes more and more complex Lack of direct evidence of ACTs – Flexible adaptive designs and traditional trial designs have not been compared directly - How to communicate the trial design and its validity to external audiences, eg, Study sections, IRBs - Page limitations, how to put it in 12 pages? ### Advice to clinician researchers - Reassess all assumptions that have gone into your preliminary ideas for a design - Take off your blinders "Don't know to ask how to do the things that you can do." - Bone up on adaptive designs - Look for funding for planning/simulations - Educate your IRBs - Read methodological papers on ACT designs - Identify statisticians comfortable with adaptive designs - Assume you will need to educate your audience about adaptive designs ### Advice to academic statisticians - Get out of your comfort zone - Familiarize yourself Adaptive Designs - Spend time with adaptive design experts to develop an understanding of the assumptions and procedures - Know your limits - Share your designs ### **Conclusions** - Beware of professional lenses - Paradigm shift - Techniques are not for the feint of heart - Need collaborators who, ideally, are knowledgeable in the emerged field of adaptive designs - Best served by statistician knowledgeable of adaptive designs or at least willing to invest in understanding and gaining experience # Conclusion - Educate yourself more about adaptive designs - Look for creative ways to fund the modeling - Simulations alone have proven to be publishable papers - Scientific paradigm shifts never occur easily - Have thick skin - Tight rope walk between the cutting edge and bleeding edge